control 3.0.0

Computer-Aided Control System Design (CACSD) Tools for GNU Octave

Lukas F. Reichlin
Thomas Vasileiou




Copyright (©) 2009-2015, Lukas F. Reichlin lukas.reichlin@gmail.com

This manual is generated automatically from the texinfo help strings of the package’s functions.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the same conditions as for modified versions.


mailto:lukas.reichlin@gmail.com

Preface

The GNU Octave control package from version 2 onwards was developed by Lukas F. Reichlin
with major contributions by Thomas Vasileiou and is based on the proven open-source library
SLICOT. This new package is intended as a replacement for control-1.0.11 by A. Scottedward
Hodel and his students. Its main features are:

e Reliable solvers for Lyapunov, Sylvester and algebraic Riccati equations.

e Pole placement techniques as well as Hy and H,, synthesis methods.

e Frequency-weighted model and controller reduction.

e System identification by subspace methods.

e Overloaded operators due to the use of classes introduced with Octave 3.2.

e Support for descriptor state-space models and non-proper transfer functions.
e Support for multiple systems in time- or frequency-domain plots.

o Improved MATLAB compatibility.
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Using the help function

Some functions of the control package are listed with the somewhat cryptic prefixes @1ti/ or
@iddata/. These prefixes are only needed to view the help text of the function, e.g. help norm
shows the built-in function while help @1ti/norm shows the overloaded function for LTT systems.
Note that there are LTI functions like pole that have no built-in equivalent. The same is true
for IDDATA functions like nkshift.

When just using the function, the leading @1ti/ must not be typed. Octave selects the right
function automatically. So one can type norm (sys, inf) and norm (matrix, inf) regardless
of the class of the argument.

Bugs!

To err is human, and software is written by humans. Therefore, any larger piece of software is
likely to contain bugs. If you find a bug in the control package, please take the time to report
your findings! Feedback of any kind is highly appreciated by the author and vital for further
enhancement of the software. Bug reports are to be sent to the Octave bug tracker, the mailing
lists or directly to the author’s e-mail: lukas.reichlin@gmail.com
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Distribution

The GNU Octave control package is free software. Free software is a matter of the users’ freedom
to run, copy, distribute, study, change and improve the software. This means that everyone
is free to use it and free to redistribute it on certain conditions. The GNU Octave control
package is not, however, in the public domain. It is copyrighted and there are restrictions on its
distribution, but the restrictions are designed to ensure that others will have the same freedom
to use and redistribute Octave that you have. The precise conditions can be found in the GNU
General Public License that comes with the GNU Octave control package and that also appears
in Appendix A [Copying], page 104.

To download a copy of control, please visit http://octave.sourceforge.net/control/.
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1 Examples

1.1 MDSSystem

Robust control of a mass-damper-spring system. Type which MDSSystem to locate, edit

MDSSystem to open and simply MDSSystem to run the example file.

1.2 optiPID

Numerical optimization of a PID controller using an objective function. The objective function
is located in the file optiPIDfun. Type which optiPID to locate, edit optiPID to open and
simply optiPID to run the example file. In this example called optiPID, loosely based on [1], it

is assumed that the plant
1

(s2+s+1) (s+1)*

is controlled by a PID controller with second-order roll-off

P(s) =

Os)=ky 1+ —— + Ty s)

T; s (1 s+1)2

in the usual negative feedback structure

L(s) P(s) C(s)

T(s) = 1+ L(s) 1 + P(s) C(s)

The plant P(s) is of higher order but benign. The initial values for the controller parameters
k,, T; and T, are obtained by applying the Astroem and Haegglund rules [2]. These values are
to be improved using a numerical optimization as shown below. As with all numerical methods,
this approach can never guarantee that a proposed solution is a global minimum. Therefore,
good initial guesses for the parameters to be optimized are very important. The Octave function
fminsearch minimizes the objective function J, which is chosen to be

Ty 7T =g [ 1Ol dt + g (ylloe = 1) + s [1SG0) o
This particular objective function penalizes the integral of time-weighted absolute error
ITAE — / ¢ le(t)] dt
0

and the maximum overshoot

to a unity reference step r(t) = €(¢) in the time domain. In the frequency domain, the sensitivity
M = |S(jw)]|o
is minimized for good robustness, where S(jw) denotes the sensitivity transfer function

1 1

S(s) = 1+ L(s) - 1+ P(s) C(s)

The constants 1, e and us are relative weighting factors or «tuning knobs» which reflect the
importance of the different design goals. Varying these factors corresponds to changing the
emphasis from, say, high performance to good robustness. The main advantage of this approach
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is the possibility to explore the tradeoffs of the design problem in a systematic way. In a
first approach, all three design objectives are weigthed equally. In subsequent iterations, the
parameters u; = 1, s = 10 and pz = 20 are found to yield satisfactory closed-loop performance.
This controller results in a system with virtually no overshoot and a phase margin of 64 degrees.

References

[1] Guzzella, L. Analysis and Design of SISO Control Systems, VDF Hochschulverlag, ETH
Zurich, 2007

[2] Astroem, K. and Haegglund, T. PID Controllers: Theory, Design and Tuning, Second Edition,

Instrument Society of America, 1995

1.3 Anderson

Frequency-weighted coprime factorization controller reduction.

1.4 Madievski

Demonstration of frequency-weighted controller reduction. The system considered in this ex-
ample has been studied by Madievski and Anderson [1] and comprises four spinning disks. The
disks are connected by a flexible rod, a motor applies torque to the third disk, and the angu-
lar displacement of the first disk is the variable of interest. The state-space model of eighth
order is non-minimumphase and unstable. The continuous-time LQG controller used in [1] is
open-loop stable and of eighth order like the plant. This eighth-order controller shall be reduced
by frequency-weighted singular perturbation approximation (SPA). The major aim of this re-
duction is the preservation of the closed-loop transfer function. This means that the error in
approximation of the controller K by the reduced-order controller Kr is minimized by

K,min |[|IW (K — K,.) V||

where weights W and V are dictated by the requirement to preserve (as far as possible) the
closed-loop transfer function. In minimizing the error, they cause the approximation process
for K to be more accurate at certain frequencies. Suggested by [1] is the use of the following
stability and performance enforcing weights:

W= (I-GK)'G, V=(I-GK)!

This example script reduces the eighth-order controller to orders four and two by the function call
Kr = spaconred (G, K, nr, ’feedback’, ’-’) where argument nr denotes the desired order (4
or 2). The key-value pair >feedback’, ’~’ allows the reduction of negative feedback controllers
while the default setting expects positive feedback controllers. The frequency responses of the
original and reduced-order controllers are depicted in figure 1, the step responses of the closed
loop in figure 2. There is no visible difference between the step responses of the closed-loop
systems with original (blue) and fourth order (green) controllers. The second order controller
(red) causes ripples in the step response, but otherwise the behavior of the system is unaltered.
This leads to the conclusion that function spaconred is well suited to reduce the order of
controllers considerably, while stability and performance are retained.

Reference

[1] Madievski, A.G. and Anderson, B.D.O. Sampled-Data Controller Reduction Procedure, IEEE
Transactions of Automatic Control, Vol. 40, No. 11, November 1995
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1.5 VLFamp
VLFamp [Function File]
result = VLFamp (verbose) [Function File]

Calculations on a two stage preamp for a multi-turn, air-core solenoid loop antenna for the
reception of signals below 30kHz.

The Octave Control Package functions are used extensively to approximate the behavior of
operational amplifiers and passive electrical circuit elements.

This example presents several 'screen’ pages of documentation of the calculations and some
reasoning about why. Plots of the results are presented in most cases.

The process is to display a ’screen’ page of text followed by the calculation and a ’Press
return to continue’ message. To proceed in the example, press return. ~C to exit.

At one point in the calculations, the process may seem to hang, but, this is because of
extensive calculations.

The returned transfer function is more than 100 characters long so will wrap in screens that
are narrow and appear jumbled.
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2 Linear Time Invariant Models

2.1 dss
sys = dss (sys) [Function File]
sys = dss (d, ...) [Function File]
sys = dss (a, b, c,d, e, ...) [Function File]
sys = dss (a, b, ¢, d, e, tsam, ...) [Function File]
Create or convert to descriptor state-space model.
Inputs
Sys LTI model to be converted to state-space.
a State matrix (n-by-n).
b Input matrix (n-by-m).
c Output matrix (p-by-n).
d Feedthrough matrix (p-by-m).
e Descriptor matrix (n-by-n).
tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.
Optional pairs of properties and values. Type set (dss) for more information.
Outputs
Sys Descriptor state-space model.

Option Keys and Values

’a? YK L0
a} b7C7

'stname’

'scaled’

‘tsam’

’inname’

‘outname’

‘ingroup’

‘outgroup’

‘name’
‘notes’
‘userdata’

Equations

7d7’ 767
State-space matrices. See 'Inputs’ for details.

The name of the states in sys. Cell vector containing strings for each state.
Default names are {°x1°’, ’x2’, ...}

Logical. If set to true, no automatic scaling is used, e.g. for frequency response
plots.

Sampling time. See ’Inputs’ for details.

The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’u1’, ’u2’, ...}

The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {’y1’, ’y2’, ...}

Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

String containing the name of the model.
String or cell of string containing comments.

Any data type.
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Ex=Ax+Bu
y=Cx+Du
See also: ss, tf.
2.2 filt
sys = filt (num, den, ...) [Function File]
sys = filt (num, den, tsam, ...) [Function File]
Create discrete-time transfer function model from data in DSP format.
Inputs
num Numerator or cell of numerators. Each numerator must be a row vector con-
taining the coefficients of the polynomial in ascending powers of z~-1. num{i,j}
contains the numerator polynomial from input j to output i. In the SISO case, a
single vector is accepted as well.
den Denominator or cell of denominators. Each denominator must be a row vector
containing the coefficients of the polynomial in ascending powers of z”-1. den{i,j}
contains the denominator polynomial from input j to output i. In the SISO case,
a single vector is accepted as well.
tsam Sampling time in seconds. If tsam is not specified, default value -1 (unspecified)
is taken.
Optional pairs of properties and values. Type set (£filt) for more information.
Outputs
Sys Discrete-time transfer function model.

Option Keys and Values

‘num’

"den’
‘tfvar’
inv’

‘tsam’

’iInname’

‘outname’

‘ingroup’

‘outgroup’

‘name’
‘notes’

‘userdata’

Numerator. See ’Inputs’ for details.

Denominator. See 'Inputs’ for details.

String containing the transfer function variable.

Logical. True for negative powers of the transfer function variable.
Sampling time. See 'Inputs’ for details.

The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’ul’, ’u2’, ...}

The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {’y1’, ’y2’, ...}

Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

String containing the name of the model.
String or cell of string containing comments.

Any data type.



6 Chapter 2: Linear Time Invariant Models

Example

1+4z"-1+ 2 z"-2
octave:1> H = filt ([0, 3], [1, 4, 2])

Transfer function ’H’ from input ’ul’ to output ...

1+4z"-1+ 2 z"-2

Sampling time: unspecified
Discrete-time model.

See also: tf.

2.3 frd
sys = frd (sys) [Function File]
sys = frd (sys, w) [Function File]
sys = frd (H w, ...) [Function File]
sys = frd (H, w, tsam, ...) [Function File]
Create or convert to frequency response data.
Inputs
Sys LTT model to be converted to frequency response data. If second argument w is
omitted, the interesting frequency range is calculated by the zeros and poles of
Sys.
H Frequency response array (p-by-m-by-lw). H(i,j,k) contains the response from
input j to output i at frequency k. In the SISO case, a vector (lw-by-1) or
(1-by-lw) is accepted as well.
w Frequency vector (lw-by-1) in radian per second [rad/s]. Frequencies must be in
ascending order.
tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.
Optional pairs of properties and values. Type set (frd) for more information.
Outputs
Sys Frequency response data object.

Option Keys and Values

'H’ Frequency response array. See 'Inputs’ for details.
'w’ Frequency vector. See ‘Inputs’ for details.
‘tsam’ Sampling time. See ’Inputs’ for details.

‘inname’  The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’ul1’, ’u2’, ...}
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‘outname’

‘ingroup’

‘outgroup’

‘name’

‘notes’

‘userdata’

The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {’y1’, ’y2°, ...}

Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

String containing the name of the model.
String or cell of string containing comments.

Any data type.

See also: dss, ss, tf.

(sys) [Function File]
(d, ...) [Function File]
(a, b, ...) [Function File]
(a, b, c, ...) [Function File]
(a, b, c,d, ...) [Function File]

[ ]

(a'7

b, c, d, tsam, ...) Function File

Create or convert to state-space model.

2.4 ss
sys = ss
sys = ss
sys = ss
sys = ss
sys = ss
sys = ss
Inputs
Sys
c
d
tsam
Outputs
Sys

LTI model to be converted to state-space.
State matrix (n-by-n).
Input matrix (n-by-m).

Output matrix (p-by-n). If ¢ is empty [] or not specified, an identity matrix is
assumed.

Feedthrough matrix (p-by-m). If d is empty [] or not specified, a zero matrix is
assumed.

Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.

Optional pairs of properties and values. Type set (ss) for more information.

State-space model.

Option Keys and Values

7a7, 7b7’ ’C’, 7d7} 767

'stname’

'scaled’

'tsam’

Inname’

State-space matrices. See 'Inputs’ for details.

The name of the states in sys. Cell vector containing strings for each state.
Default names are {’x1’, ’x2°, ...}

Logical. If set to true, no automatic scaling is used, e.g. for frequency response
plots.

Sampling time. See ’'Inputs’ for details.

The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’ul1’, ’u2’, ...}



Chapter 2: Linear Time Invariant Models

‘outname’ The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {’y1’, ’y2°, ...}

‘ingroup’  Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

‘outgroup’ Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

‘name’ String containing the name of the model.
‘notes’ String or cell of string containing comments.

‘'userdata’ Any data type.

Equations
x=Ax+Bu
y=Cx+Du

Example
octave:1> a = [1 2 3; 45 6; 7 8 9];
octave:2> b = [10; 11; 12];
octave:3> stname = {’V’, ’A’, ’kJ’};

octave:4> sys = ss (a, b, ’stname’, stname)

sys.a =
Vv A kJ
\ 1 2 3
A 4 5 6
kI 7 8 9
sys.b =
ul
v 10
A 11
kJ 12
sys.c =
V A kJ
y1 1 0 O
y2 0 1 0
y3. 0 O 1
sys.d =
ul
yl O
y2 O
y3 O

Continuous-time model.
octave:5>

See also: tf, dss.
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2.5 tf
s = tf (’s’) [Function File]
z = tf (’z’, tsam) [Function File]
sys = tf (sys) [Function File]
sys = tf (mat, ...) [Function File]
sys = tf (num, den, ...) [Function File]
sys = tf (num, den, tsam, ...) [Function File]
Create or convert to transfer function model.
Inputs
Sys LTI model to be converted to transfer function.
mat Gain matrix to be converted to static transfer function.
num Numerator or cell of numerators. Each numerator must be a row vector con-
taining the coefficients of the polynomial in descending powers of the transfer
function variable. numf{i,j} contains the numerator polynomial from input j to
output i. In the SISO case, a single vector is accepted as well.
den Denominator or cell of denominators. Each denominator must be a row vector
containing the coefficients of the polynomial in descending powers of the transfer
function variable. den{i,j} contains the denominator polynomial from input j to
output i. In the SISO case, a single vector is accepted as well.
tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.
Optional pairs of properties and values. Type set (tf) for more information.
Outputs
Sys Transfer function model.

Option Keys and Values

‘num’

’den’
‘tfvar’
inv’

‘tsam’

‘iInname’

‘outname’

‘ingroup’

‘outgroup’

‘name’
‘notes’

‘userdata’

Numerator. See 'Inputs’ for details.

Denominator. See 'Inputs’ for details.

String containing the transfer function variable.

Logical. True for negative powers of the transfer function variable.
Sampling time. See ’Inputs’ for details.

The name of the input channels in sys. Cell vector of length m containing strings.
Default names are {’ul1’, ’u2’, ...}

The name of the output channels in sys. Cell vector of length p containing strings.
Default names are {*y1’, ’y2’, ...}

Struct with input group names as field names and vectors of input indices as field
values. Default is an empty struct.

Struct with output group names as field names and vectors of output indices as
field values. Default is an empty struct.

String containing the name of the model.
String or cell of string containing comments.

Any data type.



10

Example

Chapter 2: Linear Time Invariant Models

octave:1> s = tf (’s?);

octave:2> G = 1/(s+1)
Transfer function ’G’ from input ’ul’ to
1
yl: -———-
s +1

Continuous-time model.

tf (’z’, 0.2);
0.095/(2z-0.9)

octave:3> z
octave:4> H

Transfer function ’H’ from input ’ul’ to
0.095

yl: -——————-
z - 0.9

Sampling time: 0.2 s
Discrete-time model.

octave:5> num = {[1, 5, 71, [1]; [1, 71,
octave:6> den

octave:7> sys

tf (num, den)

output ...

output ...

[1, 5, 51}; =

{[1, 5, 6], [1, 2]; [1, 8, 6], [1, 3, 2]1};

Transfer function ’sys’ from input ’ul’ to output ... =

s2 + 8 s + 6
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Transfer function ’sys’ from input ’u2’ to output ...

1
yl: --—-——-
s + 2
s/2+5s+5
y2: —mmm————————-

Continuous-time model.
octave:8>

See also: filt, ss, dss.

2.6 zpk

s = zpk (’s”’) Function File

s [ ]

z = zpk (’z’, tsam) [Function File]
sys = zpk (sys) [Function File]
sys = zpk (k, . ) [Function File]
sys = zpk (z,p, k, ...) [Function File]
sys = zpk (z, p, k tsam, ...) [Function File]
[ ]

sys = zpk (z, p, k, tsam, ...) Function File
Create transfer function model from zero-pole-gain data. This is just a stop-gap compatibility
wrapper since zpk models are not yet implemented.

Inputs

Sys LTI model to be converted to transfer function.

z Cell of vectors containing the zeros for each channel. z{i,j} contains the zeros
from input j to output i. In the SISO case, a single vector is accepted as well.

p Cell of vectors containing the poles for each channel. p{i,j} contains the poles
from input j to output i. In the SISO case, a single vector is accepted as well.

k Matrix containing the gains for each channel. k(i,j) contains the gain from input
j to output i.

tsam Sampling time in seconds. If tsam is not specified, a continuous-time model is
assumed.
Optional pairs of properties and values. Type set (tf) for more information.

Outputs

Sys Transfer function model.

See also: tf, ss, dss, frd.
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3 Model Data Access

3.1 @lti/dssdata

la, b, ¢, d, e, tsam] = dssdata (sys) [Function File]

la, b, ¢, d, e, tsam] = dssdata (sys, []) [Function File]
Access descriptor state-space model data. Argument sys is not limited to descriptor state-
space models. If sys is not a descriptor state-space model, it is converted automatically.

Inputs

Sys Any type of LTI model.

[] In case sys is not a dss model (descriptor matrix e empty), dssdata (sys, [])
returns the empty element e = [] whereas dssdata (sys) returns the identity
matrix e = eye (size (a)).

Outputs

a State matrix (n-by-n).

b Input matrix (n-by-m).

c Measurement matrix (p-by-n).

d Feedthrough matrix (p-by-m).

e Descriptor matrix (n-by-n).

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

3.2 @lti/filtdata

[num, den, tsam] = filtdata (sys) [Function File]

[num, den, tsam] = filtdata (sys, "vector") [Function File]
Access discrete-time transfer function data in DSP format. Argument sys is not limited to
transfer function models. If sys is not a transfer function, it is converted automatically.

Inputs
Sys Any type of discrete-time LTI model.

n Vll n VeCtOI'"
For SISO models, return num and den directly as column vectors instead of cells
containing a single column vector.

Outputs

num Cell of numerator(s). Each numerator is a row vector containing the coefficients
of the polynomial in ascending powers of z°-1. num{i,j} contains the numerator
polynomial from input j to output i. In the SISO case, a single vector is possible
as well.

den Cell of denominator(s). Each denominator is a row vector containing the co-

efficients of the polynomial in ascending powers of z~-1. den{i,j} contains the
denominator polynomial from input j to output i. In the SISO case, a single
vector is possible as well.

tsam Sampling time in seconds. If tsam is not specified, -1 is returned.
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3.3 @lti/frdata

[H, w, tsam] = frdata (sys) [Function File]

[H, w, tsam] = frdata (sys, "vector") [Function File]
Access frequency response data. Argument sys is not limited to frequency response data
objects. If sys is not a frd object, it is converted automatically.

Inputs
Sys Any type of LTI model.

n V"; "VeCtOT"
In case sys is a SISO model, this option returns the frequency response as a
column vector (lw-by-1) instead of an array (p-by-m-by-lw).

Outputs

H Frequency response array (p-by-m-by-lw). H(i,j,k) contains the response from
input j to output i at frequency k. In the SISO case, a vector (lw-by-1) is
possible as well.

w Frequency vector (lw-by-1) in radian per second [rad/s|. Frequencies are in as-
cending order.

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

3.4 @lti/get

get (sys) [Function File]
value = get (sys, "key") [Function File]
[vall, val2, ...] = get (sys, "keyl", "key2", ...) [Function File]

Access key values of LTI objects.

3.5 @lti/set

set (sys) [Function File]
set (sys, "key", value, ...) [Function File]
retsys = set (sys, "key", value, ...) [Function File]

Set or modify properties of LTI objects. If no return argument retsys is specified, the modified
LTT object is stored in input argument sys. set can handle multiple properties in one call: set
(sys, ’keyl’, vall, ’key2’, val2, ’key3’, val3). set (sys) prints a list of the object’s
key names.

3.6 @Ilti/ssdata

la, b, ¢, d, tsam] = ssdata (sys) [Function File]
Access state-space model data. Argument sys is not limited to state-space models. If sys is
not a state-space model, it is converted automatically.

Inputs

Sys Any type of LTI model.
Outputs

a State matrix (n-by-n).
b Input matrix (n-by-m).

c Measurement matrix (p-by-n).
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d Feedthrough matrix (p-by-m).

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

3.7 @lti/tfdata

[num, den, tsam] = tfdata (sys) [Function File]
[num, den, tsam] = tfdata (sys, "vector") [Function File]
[num, den, tsam] = tfdata (sys, "tfpoly") [Function File]
Access transfer function data. Argument sys is not limited to transfer function models. If
sys is not a transfer function, it is converted automatically.
Inputs
Sys Any type of LTI model.

n V", n VeCtOf"
For SISO models, return num and den directly as column vectors instead of cells
containing a single column vector.

Outputs

num Cell of numerator(s). Each numerator is a row vector containing the coefficients
of the polynomial in descending powers of the transfer function variable. num{i,j}
contains the numerator polynomial from input j to output i. In the SISO case, a
single vector is possible as well.

den Cell of denominator(s). Each denominator is a row vector containing the coeffi-
cients of the polynomial in descending powers of the transfer function variable.
den{i,j} contains the denominator polynomial from input j to output i. In the
SISO case, a single vector is possible as well.

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.

3.8 @lti/zpkdata

[z, p, k, tsam] = zpkdata (sys) [Function File]
[z, p, k, tsam] = zpkdata (sys, "v") [Function File]
Access zero-pole-gain data.
Inputs
Sys Any type of LTI model.

n Vll "VeCtOI'"
For SISO models, return z and p directly as column vectors instead of cells
containing a single column vector.

Outputs

z Cell of column vectors containing the zeros for each channel. z{i,j} contains the
zeros from input j to output i.

p Cell of column vectors containing the poles for each channel. p{i,j} contains the
poles from input j to output i.

k Matrix containing the gains for each channel. k(i,j) contains the gain from input

j to output i.

tsam Sampling time in seconds. If sys is a continuous-time model, a zero is returned.
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4 Model Conversions

4.1 @lti/c2d

sys = c2d (sys, tsam) [Function File]
sys = c2d (sys, tsam, method) [Function File]
sys = c2d (sys, tsam, ’prewarp’, wO) [Function File]
Convert the continuous LTI model into its discrete-time equivalent.
Inputs
Sys Continuous-time LTT model.
tsam Sampling time in seconds.
method Optional conversion method. If not specified, default method "zoh" is taken.
"zoh’ Zero-order hold or matrix exponential.
’tustin’, ’bilin’
Bilinear transformation or Tustin approximation.
‘prewarp’  Bilinear transformation with pre-warping at frequency wo.
'matched” Matched pole/zero method.
Outputs
Sys Discrete-time LTI model.

4.2 @lti/d2c

sys = d2c (sys) [Function File]
sys = d2c (sys, method) [Function File]
sys = d2c (sys, ’prewarp’, w0) [Function File]
Convert the discrete LTI model into its continuous-time equivalent.
Inputs
Sys Discrete-time LTI model.
method Optional conversion method. If not specified, default method "zoh" is taken.
'zoh’ Zero-order hold or matrix logarithm.
‘tustin’, ’bilin’
Bilinear transformation or Tustin approximation.
‘prewarp’ Bilinear transformation with pre-warping at frequency wo0.
‘'matched’ Matched pole/zero method.
Outputs

Sys Continuous-time LTT model.
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4.3 @lti/d2d

sys = d2d (sys, tsam) [Function File]
sys = d2d (sys, tsam, method) [Function File]
sys = d2d (sys, tsam, ’prewarp’, wO0) [Function File]
Resample discrete-time LTT model to sampling time tsam.
Inputs
Sys Discrete-time LTI model.
tsam Desired sampling time in seconds.
method Optional conversion method. If not specified, default method "zoh" is taken.
"zoh’ Zero-order hold or matrix logarithm.
’tustin’, ’bilin’
Bilinear transformation or Tustin approximation.
‘prewarp’ Bilinear transformation with pre-warping at frequency wo.
‘'matched’ Matched pole/zero method.
Outputs
Sys Resampled discrete-time LTT model with sampling time tsam.

4.4 @lti/prescale

[scaledsys, info] = prescale (sys) [Function File]
Scale state-space model. The scaled model scaledsys is equivalent to sys, but the state vector
is scaled by diagonal transformation matrices in order to increase the accuracy of subsequent
numerical computations. Frequency response commands perform automatic scaling unless
model property scaled is set to true.

Inputs

Sys LTT model.

Outputs

scaledsys  Scaled state-space model.

info Structure containing additional information.
info.SL Left scaling factors. T1 = diag (info.SL).
info.SR Right scaling factors. Tr = diag (info.SR).

Equations

Es =Tl * E x Tr
As =Tl * A x Tr

Bs =Tl * B
Cs = C *x Tr
Ds = D

For proper state-space models, TI and Tr are inverse of each other.

Algorithm
Uses SLICOT TBO1ID and TGO1AD by courtesy of NICONET e.V. (http://wuw.slicot.

org).
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4.5 Qlti/xperm

retsys = xperm (sys, idx) [Function File]

Reorder states in state-space models.

Inputs

Sys State-space model.

idx Vector containing the state indices in the desired order. Alternatively, a cell
vector containing the state names is possible as well. See sys.stname. State
names only work if they were assigned explicitly before, i.e. sys.stname contains
no empty strings. Note that if certain state indices of sys are missing or appear
multiple times in idx, these states will be pruned or duplicated accordingly in
the resulting state-space model retsys.

Outputs

retsys Resulting state-space model with states reordered according to idx.
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5 Model Interconnections

5.1 append

sys = append (sysl1, sys2, ..., sysN) [Function File]
Group LTI models by appending their inputs and outputs.

5.2 @lti/blkdiag

sys = blkdiag (sys1, sys2, ..., sysN) [Function File]
Block-diagonal concatenation of LTI models.

5.3 Q@lti/connect

sys = connect (sysl1, sys2, ..., sysN, inputs, outputs) [Function File]
sys = connect (sys, cm, inputs, outputs) [Function File]
Name-based or index-based interconnections between the inputs and outputs of LTI models.
Inputs
sysl, ..., sysN
LTI models to be connected. The properties ’inname’ and ’outname’ of each
model should be set according to the desired input-output connections.
inputs For name-based interconnections, string or cell of strings containing the names
of the inputs to be kept. The names must be part of the properties ’ingroup’ or
‘inname’. For index-based interconnections, vector containing the indices of the
inputs to be kept.
outputs For name-based interconnections, string or cell of strings containing the names
of the outputs to be kept. The names must be part of the properties "outgroup’
or ’outname’. For index-based interconnections, vector containing the indices of
the outputs to be kept.
cm Connection matrix (not name-based). Each row of the matrix represents a sum-
ming junction. The first column holds the indices of the inputs to be summed
with outputs of the subsequent columns. The output indices can be negative, if
the output is to be substracted, or zero. For example, the row
[2 03 -4 0]
or
[2 -4 3]
will sum input u(2) with outputs y(3) and y(4) as
u(2) + y(3) - y4).
Outputs
Sys Resulting interconnected system with outputs outputs and inputs inputs.

See also: sumblk.
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5.4 @lti/feedback

sys = feedback (sys1) [ ]
sys = feedback (sysi1, "+") [ ]
sys = feedback (sys1, sysZ2) [Function File]
sys = feedback (sysi1, sys2, "+") [ |
sys = feedback (sysl1, sys2, feedin, feedout) [ |
sys = feedback (sysl, sys2, feedin, feedout, "+") [ ]

Function File
Function File

Function File
Function File
Function File

Feedback connection of two LTI models.

Inputs

sys1 LTI model of forward transmission. [pl, m1] = size (sysl).

sys2 LTI model of backward transmission. If not specified, an identity matrix of
appropriate size is taken.

feedin Vector containing indices of inputs to sysl which are involved in the feedback
loop. The number of feedin indices and outputs of sys2 must be equal. If not
specified, 1:m1 is taken.

feedout Vector containing indices of outputs from sysl which are to be connected to sys2.
The number of feedout indices and inputs of sys2 must be equal. If not specified,
1:p1 is taken.

S Positive feedback sign. If not specified, "-" for a negative feedback interconnec-
tion is assumed. +1 and -1 are possible as well, but only from the third argument
onward due to ambiguity.

Outputs

Sys Resulting LTT model.

Block Diagram

u + e + y
—————— >(+)----=>| sysl |-——————4-———--->

~ - +o— + |

| |

| Ao + |

o | sys2 |<———--- +

R +

5.5 @lti/1ft
sys = 1ft (sysli, sys2) [Function File]
sys = 1ft (sysl1, sys2, nu, ny) [Function File]

Linear fractional tranformation, also known as Redheffer star product.

Inputs

sysl1 Upper LTI model.

sys2 Lower LTI model.

nu The last nu inputs of sysl are connected with the first nu outputs of sys2. If not
specified, min (m1, p2) is taken.

ny The last ny outputs of sysl are connected with the first ny inputs of sys2. If not

specified, min (p1, m2) is taken.
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Outputs
Sys Resulting LTT model.
Block Diagram

............. SYS. it =
o +
wl —————————- >| | ————————- >zl
| sys1l |
u +-——->| | ————- +y
| Hommm—o - + (I Lower LFT
| |
| o + | : 1ft (sysl, sys2)
== | sys2 |[<-———+
oo +
............. SYS. i =
oo +
u +-—-->| sysl |---—- +y o
| Fo—mm——— + | : Upper LFT
| |
| Fommm + I : 1ft (sysl, sys2)
+-———- | | <————+
| sys2 |
Zz2 <———————————- | | <===————————- w2
oo +
............. SYS. it =
Fommm - +
wl - >| | -—————————— >zl
| sysl |
u +---=>| | -———- +y
| Fommm e + |
| | : 1ft (sysl, sys2, nu, ny)
| o + |
+-———- | | <————+
| sys2 |
Zz2 <———————————- | | <=—=————————- w2
Fommm - +
5.6 @lti/mconnect
sys = mconnect (sys, m) [Function File]
sys = mconnect (sSys, m, inputs, outputs) [Function File]

Arbitrary interconnections between the inputs and outputs of an LTI model.

Inputs
Sys LTT system.
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inputs

outputs

Outputs

Sys
Example

Connection matrix. Each row belongs to an input and each column represents
an output.

Vector of indices of those inputs which are retained. If not specified, all inputs
are kept.

Vector of indices of those outputs which are retained. If not specified, all outputs
are kept.

Interconnected system.

Solve the system equations of

y(t) = G e(t)

e(t) = u(t) + M y(t)

in order to build

y(t) = H u(t)

The matrix M for a (p-by-m) system G
has m rows and p columns (m-by-p).

Example for a 3x2 system:
ul = -1*xyl + b5xy2 + O*y3
u2 = pixyl + O*y2 - 7xy3

| -1 5 0|
M= pi 0 7|
5.7 @lti/parallel
sys = parallel (sysi, sys2) [Function File]

Parallel connection of two LTI systems.

Block Diagram

Fomm— +
+-=>| sysl |-——+
u I + |+ y
——————— + I
| to——————— + | +
+-=>| sys2 |---+
Fomm +
.......... SYS. et

sys = parallel (sysl, sys2)

5.8 @Ilti/series

sys = series (sysl, sys2) [Function File]
sys = series (sysl, sys2, outputsl, inputs2) [Function File]
Series connection of two LTI models.

Block Diagram
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v2 - +
---------- >| | y

Hommmm + y1 u2 | sys2 |--—-—-- >
u | | -—==mm- >| |
—————— >| sysl | zl +-———————+

| | -===- >

e +

................. SYS . iii i

outputsl = [1]
inputs2 = [2]
sys = series (sysl, sys2, outputsl, inputs2)

5.9 sumblk
S = sumblk (formula) [Function File]
S = sumblk (formula, n) [Function File]

Create summing junction S from string formula for name-based interconnections.

Inputs

formula String containing the formula of the summing junction, e.g. e =r -y +d
n Signal size. Default value is 1.

Outputs

S State-space model of the summing junction.

Example
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octave:1> S = sumblk (’e

Static gain.

octave:2> S = sumblk (’e

S.d =
rl r2 yl1 y2
el 1 0 -1 O
e2 0 1 0 -1

Static gain.

See also: connect.

d1
1
0

r-y+d)

r-y+d, 2

d2
0
1
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6 Model Characteristics

6.1 ctrb
co = ctrb (sys) [Function File]
co = ctrb (a, b) [Function File]

Return controllability matrix.

Inputs

Sys LTI model.

a State matrix (n-by-n).

b Input matrix (n-by-m).

Outputs

co Controllability matrix.

Equation

C,=[B AB A’B ... A" 'B|

6.2 ctrbf

[sysbar, T, K] = ctrbf (sys) [Function File]
[sysbar, T, K] = ctrbf (sys, tol) [Function File]
[ }

}

[Abar, Bbar, Cbar, T, K] ctrbf (4, B, C) Function File

[Abar, Bbar, Cbar, T, K] ctrbf (4, B, C, TOL) [Function File
If Co=ctrb(A,B) has rank r <= n = SIZE(A,1), then there is a similarity transformation Tc
such that Tc = [t1 t2] where t1 is the controllable subspace and t2 is orthogonal to t1

Abar = Tc \ A * Tc , Bbar = Tc \ B, Cbar = C * Tc

and the transformed system has the form

| Ac A12] | Bc |
Abar = |-————————- |, Bbar = | -——-|, Cbar = [Cc | Cnc].
| 0 Anc| | 0 |

where (Ac,Bc) is controllable, and Cc(sI-Ac)~(-1)Bc = C(sI-A)~(-1)B. and the system is
stabilizable if Anc has no eigenvalues in the right half plane. The last output K is a vector
of length n containing the number of controllable states.

6.3 Qlti/dcgain

k = dcgain (sys) [Function File]
DC gain of LTI model.
Inputs
sys LTT system.
Outputs
k DC gain matrice. For a system with m inputs and p outputs, the array k has

dimensions [p, m].

See also: freqresp.
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6.4 gram
W = gram (sys, mode) [Function File]
Wc = gram (a, b) [Function File]

gram (sys, "c") returns the controllability gramian of the (continuous- or discrete-time) sys-
tem sys. gram (sys, "o") returns the observability gramian of the (continuous- or discrete-
time) system sys. gram (a, b) returns the controllability gramian We of the continuous-time
system dzx/dt = ax + bu; i.e., We satisfies alWe + mW¢c' + bb = 0.

6.5 hsvd

hsv = hsvd (sys) [Function File]
hsv = hsvd (sys, "offset", offset) [Function File]
hsv = hsvd (sys, "alpha", alpha) [Function File]

Hankel singular values of the stable part of an LTI model. If no output arguments are given,
the Hankel singular values are displayed in a plot.

Algorithm

Uses SLICOT AB13AD by courtesy of NICONET e.V. (http://www.slicot.org)

6.6 @lti/isct

bool = isct (sys) [Function File]
Determine whether LTT model is a continuous-time system.

Inputs

sys LTT system.

Outputs

bool = 0 sys is a discrete-time system.

bool =1 sysis a continuous-time system or a static gain.

6.7 isctrb

[bool, ncon] = isctrb (sys) [Function File]

[bool, ncon] = isctrb (sys, tol) [Function File]

[bool, ncon] = isctrb (a, b) [Function File]

[bool, ncon] = isctrb (a, b, e) [Function File]

[bool, ncon] = isctrb (a, b, [], tol) [Function File]

[bool, ncon] = isctrb (a, b, e, tol) [Function File]
Logical check for system controllability. For numerical reasons, isctrb (sys) should be used
instead of rank (ctrb (sys)).

Inputs

Sys LTT model. Descriptor state-space models are possible. If sys is not a state-space
model, it is converted to a minimal state-space realization, so beware of pole-zero
cancellations which may lead to wrong results!

a State matrix (n-by-n).

b Input matrix (n-by-m).

e Descriptor matrix (n-by-n). If e is empty []1 or not specified, an identity matrix

is assumed.
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tol Optional roundoff parameter. Default value is 0.
Outputs
bool = 0  System is not controllable.
bool =1 System is controllable.
ncon Number of controllable states.
Algorithm
Uses SLICOT AB010OD and TGO1HD by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: isobsv.

6.8 isdetectable

bool
bool
bool
bool
bool
bool
bool
bool
bool

isdetectable

isdetectable (sys)
isdetectable (sys, tol)
isdetectable (a, ¢)
isdetectable (a, c, €)
isdetectable (a, c, [], tol)
isdetectable (a, c, e, tol)
isdetectable (a, c, [], [|, dflg)
isdetectable (a, c, e, [], dflg)
(

a’
a, c, [|, tol, dflg)

bool = isdetectable (a, c, e, tol, dflg)
Logical test for system detectability. All unstable modes must be observable or all unobserv-
able states must be stable.

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

Inputs

sys LTT system.

a State transition matrix.

c Measurement matrix.

e Descriptor matrix. If e is empty [] or not specified, an identity matrix is assumed.
tol Optional tolerance for stability. Default value is 0.

dflg = 0  Matrices (a, c¢) are part of a continuous-time system. Default Value.
dfig =1  Matrices (a, c¢) are part of a discrete-time system.

Outputs

bool = 0  System is not detectable.

bool =1 System is detectable.

Algorithm

Uses SLICOT AB010OD and TGO1HD by courtesy of NICONET e.V. (http://www.slicot.

org) See isstabilizable for description of computational method.

See also: isstabilizable, isstable, isctrb, isobsv.
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6.9 @Ilti/isdt

bool = isdt (sys) [Function File]
Determine whether LTI model is a discrete-time system.

Inputs

Sys LTI system.

Outputs

bool = 0  sys is a continuous-time system.

bool =1 sysis a discrete-time system or a static gain.

6.10 @Ilti/isminimumphase

bool = isminimumphase (sys) [Function File]

bool = isminimumphase (sys, tol) [Function File]
Determine whether LTI system has asymptotically stable zero dynamics. According to the
definition of Byrnes/Isidori [1], the zeros of a minimum-phase system must be strictly inside
the left complex half-plane (continuous-time case) or inside the unit circle (discrete-time
case). Note that the poles are not tested.

M. Zeitz [2] discusses the inconsistent definitions of the minimum-phase property in a German
paper. The abstract in English states the following [2]:

Originally, the minimum phase property has been defined by H. W. Bode [3] in order to
characterize the unique relationship between gain and phase of the frequency response. With
regard to the design of digital filters, another definition of minimum phase is used and a
filter is said to be minimum phase if both the filter and its inverse are asymptotically stable.
Finally, systems with asymptotically stable zero dynamics are named as minimum phase by
C. I. Byrnes and A. Isidori [1]. Due to the inconsistent definitions, avoiding the minimum
phase property for control purposes is advocated and the well-established criteria of Hurwitz
or Ljapunow to describe the stability of filters and zero dynamics are recommended.

Inputs
sys LTT system.
tol Optional tolerance. tol must be a real-valued, non-negative scalar. Default value
is 0.
Outputs
bool True if the system is minimum-phase and false otherwise.
real (z) < -tolx(1 + abs (z)) continuous-time
abs (z) < 1 - tol discrete-time
References

[1] Byrnes, C.I. and Isidori, A. A Frequency Domain Philosophy for Nonlinear Systems. IEEE
Conf. Dec. Contr. 23, pp. 15691573, 1984.

[2] Zeitz, M. Minimum phase no relevant property of automatic controll. at Automa-
tisierungstechnik. Volume 62, Issue 1, pp. 310, 2014.

[3] Bode, H.-W. Network Analysis and Feedback Amplifier Design. D. Van Nostrand Company,
pp. 312-318, 1945. pp. 341-351, 1992.
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6.11 isobsv

[bool, nobs] = isobsv (sys) [
[bool, nobs] = isobsv (sys, tol) [
[bool, nobs] = isobsv (a, c) [Function File
[bool, nobs] = isobsv (a, c, €) [
[bool, nobs] = isobsv (a, c, [|, tol) [
[bool, nobs] = isobsv (a, c, e, tol) [

Function File]
Function File

Function File

}
}
Function File]
}
Function File]

Logical check for system observability. For numerical reasons, isobsv (sys) should be used
instead of rank (obsv (sys)).

Inputs
Sys

a

c

e

tol

Outputs
bool = 0
bool =1

nobs

Algorithm

LTI model. Descriptor state-space models are possible.
State matrix (n-by-n).
Measurement matrix (p-by-n).

Descriptor matrix (n-by-n). If e is empty [] or not specified, an identity matrix
is assumed.

Optional roundoff parameter. Default value is 0.

System is not observable.
System is observable.

Number of observable states.

Uses SLICOT AB010OD and TGO1HD by courtesy of NICONET e.V. (http://www.slicot.

org)

See also:

isctrb.

6.12 @Ilti/issiso

bool = issiso (sys) [Function File]
Determine whether LTI model is single-input/single-output (SISO).

6.13 isstabilizable

bool = isstabilizable (sys)
bool = isstabilizable (sys, tol)
bool = isstabilizable (a, b)

Function File
Function File
Function File

bool = isstabilizable (a, b, e) Function File
bool = isstabilizable (a, b, e, tol) Function File
bool = isstabilizable (a, b, [, [], df1g) Function File

bool = isstabilizable (a, b, e, [|, df1g)

[ ]

[ ]

[ ]

b [ ]
bool = isstabilizable (a, b, [], tol) [Function File]
b [ ]
| %

bool = isstabilizable (a, b, [|, tol, dflg) [ ]
]

Function File
Function File

bool = isstabilizable (a, b, e, tol, dflg) [Function File
Logical check for system stabilizability. All unstable modes must be controllable or all un-
controllable states must be stable.

Inputs


http://www.slicot.org
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Sys
a

b

e

tol

dflg =0
dflg =1
Outputs
bool = 0
bool = 1
Algorithm

LTI system. If sys is not a state-space system, it is converted to a minimal state-
space realization, so beware of pole-zero cancellations which may lead to wrong
results!

State transition matrix.

Input matrix.

Descriptor matrix. If e is empty [1 or not specified, an identity matrix is assumed.
Optional tolerance for stability. Default value is 0.

Matrices (a, b) are part of a continuous-time system. Default Value.

Matrices (a, b) are part of a discrete-time system.

System is not stabilizable.

System is stabilizable.

Uses SLICOT AB010D and TGO1HD by courtesy of NICONET e.V. (http://www.slicot.

org)

Calculate staircase form (SLICOT AB0O10D)

Extract unobservable part of state transition matrix
Calculate eigenvalues of unobservable part

Check whether

real (ev) < -tol*(1 + abs (ev)) continuous-time
abs (ev) < 1 - tol discrete-time

* ¥ X %

See also: isdetectable, isstable, isctrb, isobsv.

6.14 @lti/isstable

bool = isstable (sys) [Function File]
bool = isstable (sys, tol) [Function File]

Determine whether LTT system is stable.

Inputs

sys LTT system.

tol Optional tolerance for stability. tol must be a real-valued, non-negative scalar.

Default value is 0.
Outputs
bool True if the system is stable and false otherwise.

real (p) < -tol*(1 + abs (p)) continuous-time
abs (p) <1 - tol discrete-time
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6.15 @lti/norm

gain = norm (sys, 2) [Function File]
[gain, wpeak] = norm (sys, inf) [Function File]
[gain, wpeak] = norm (sys, inf, tol) [Function File]
Return H-2 or L-inf norm of LTI model.
Algorithm

Uses SLICOT AB13BD and AB13DD by courtesy of NICONET e.V. (http://www.slicot.
org)

6.16 obsv

ob = obsv (sys) [Function File]
ob = obsv (a, ¢) [Function File]
Return observability matrix.

Inputs

Sys LTT model.

a State matrix (n-by-n).

c Measurement matrix (p-by-n).
Outputs

ob Observability matrix.

Equation
C
CA
O,=| CA?

can
6.17 obsvf

[sysbar, T, K] = obsvf (sys) [Function File

[sysbar, T, K] = obsvf (sys, tol) [Function File

[Abar, Bbar, Cbar, T, K] obsvf (4, B, C) [Function File

[Abar, Bbar, Cbar, T, K] obsvf (4, B, C, TOL) [Function File
If Ob=obsv(A,C) has rank r <= n = SIZE(A,1), then there is a similarity transformation Tc
such that To = [t1;t2] where t1 is ¢ and t2 is orthogonal to t1

Abar = To \ A * To , Bbar = To \ B, Cbar = C * To

]
}
}
]

and the transformed system has the form

| Ao 0 | | |
Avar = |[-————————- |, Bbar = | --—- |, Cbar = [Co | O ].
| A21  Anol | |

where (Ao,Bo) is observable, and Co(sl-Ao)~(-1)Bo = C(sI-A)~(-1)B. And system is de-
tectable if Ano has no eigenvalues in the right half plane. The last output K is a vector of
length n containing the number of observable states.
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6.18 @lti/pole

p = pole (sys) [Function File]
Compute poles of LTT system.
Inputs

Sys LTI model.
Outputs
p Poles of sys.

Algorithm

For (descriptor) state-space models, pole relies on Octave’s eig. For SISO transfer functions,
pole uses Octave’s roots. MIMO transfer functions are converted to a minimal state-space
representation for the computation of the poles.

6.19 pzmap

pzmap (sys) [Function File]

pzmap (sysl1, sys2, ..., sysN) [Function File]

pzmap (sysl1, ’stylel’, ..., sysN, ’styleN’) [Function File]
[ |

[p, z] = pzmap (sys) Function File
Plot the poles and zeros of an LTI system in the complex plane. If no output arguments are
given, the result is plotted on the screen. Otherwise, the poles and zeros are computed and
returned.

Inputs

sys LTT model.

'style’ Line style and color, e.g. ’r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Outputs

p Poles of sys.

z Invariant zeros of sys.

6.20 Qlti/size

nvec = size (sys) [Function File]
n = size (sys, dim) [Function File]
[p, m] = size (sys) [Function File]
LTT model size, i.e. number of outputs and inputs.
Inputs
sys LTT system.
dim If given a second argument, size will return the size of the corresponding dimen-
sion.
Outputs
nvec Row vector. The first element is the number of outputs (rows) and the second
element the number of inputs (columns).
n Scalar value. The size of the dimension dim.
P Number of outputs.

m Number of inputs.
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6.21 @lti/zero

z = zero (sys) [Function File]
z = zero (sys, type) [Function File]
[z, k, info] = zero (sys) [Function File]

Compute zeros and gain of LTI model. By default, zero computes the invariant zeros, also
known as Smith zeros. Alternatively, when called with a second input argument, zero can also
compute the system zeros, transmission zeros, input decoupling zeros and output decoupling
zeros. See paper [1] for an explanation of the various zero flavors as well as for further details.

Inputs
Sys LTT model.

type String specifying the type of zeros:

da?

'system’, ’s
Compute the system zeros. The system zeros include in all cases
(square, non-square, degenerate or non-degenerate system) all trans-
mission and decoupling zeros.

‘invariant’, 'inv’
Compute invariant zeros. Default selection.
’transmission’, ’t’
Compute transmission zeros. Transmission zeros are a subset of the
invariant zeros. The transmission zeros are the zeros of the Smith-
McMillan form of the transfer function matrix.
‘input’, ’inp’, ’id’
Compute input decoupling zeros. The input decoupling zeros are
also known as the uncontrollable eigenvalues of the pair (A,B).
‘output’, 'o’, ’od’
Compute output decoupling zeros. The output decoupling zeros are
also known as the unobservable eigenvalues of the pair (A,C).

Outputs

z Depending on argument type, z contains the invariant (default), system, trans-
mission, input decoupling or output decoupling zeros of sys as defined in [1].

k Gain of SISO system sys. For MIMO systems, an empty matrix [] is returned.

info Struct containing additional information. For details, see the documentation of
SLICOT routines ABOSND and AGO8BD.

info.rank  The normal rank of the transfer function matrix (regular state-space models) or
of the system pencil (descriptor state-space models).

info.infz Contains information on the infinite elementary divisors as follows: the
system has info.infz(i) infinite elementary divisors of degree i, where
i=1,2,...,length(info.infz).

info.kronr Right Kronecker (column) indices.
info.kronl Left Kronecker (row) indices.

Examples
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invariant zeros

system zeros

invariant zeros
transmission zeros
output decoupling zeros
input decoupling zeros

[z, k, info] = zero (sys)

z = zero (sys, ’system’)

= zero (sys, ’invariant’)

= zero (sys, ’transmission’)
= zero (sys, ’output’)

= zero (sys, ’input’)

H H H H HH

N N N N

Algorithm

For (descriptor) state-space models, zero relies on SLICOT ABO8ND and AG0O8BD by cour-
tesy of NICONET e.V. (http://www.slicot.org) For SISO transfer functions, zero uses
Octave’s roots. MIMO transfer functions are converted to a minimal state-space represen-
tation for the computation of the zeros.

References

[1] MacFarlane, A. and Karcanias, N. Poles and zeros of linear multivariable systems: a sur-
vey of the algebraic, geometric and complex-variable theory. Int. J. Control, vol. 24, pp.
33-74, 1976.

[2] Rosenbrock, H.H. Correction to "The zeros of a system’. Int. J. Control, vol. 20, no. 3,
pp. 525-527, 1974.

[3] Svaricek, F. Computation of the structural invariants of linear multivariable systems with
an extended version of the program ZERQOS. Systems & Control Letters, vol. 6, pp. 261-266,
1985.

[4] Emami-Naeini, A. and Van Dooren, P. Computation of zeros of linear multivariable sys-
tems. Automatica, vol. 26, pp. 415-430, 1982.
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7 Model Simplification

7.1 Qlti/minreal

sys = minreal (sys) [Function File]
sys = minreal (sys, tol) [Function File]
Minimal realization or zero-pole cancellation of LTI models.

7.2 @lti/sminreal

sys = sminreal (sys) [Function File]

sys = sminreal (sys, tol) [Function File]
Perform state-space model reduction based on structure. Remove states which have no influ-
ence on the input-output behaviour. The physical meaning of the states is retained.

Inputs

Sys State-space model.

tol Optional tolerance for controllability and observability. Entries of the state-space
matrices whose moduli are less or equal to tol are assumed to be zero. Default
value is 0.

Outputs

Sys Reduced state-space model.

See also: minreal.
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8 Time Domain Analysis

8.1 covar
[p, q] = covar (sys, w) [Function File]
Return the steady-state covariance.
Inputs
Sys LTT model.
w Intensity of Gaussian white noise inputs which drive sys.
Outputs
p Output covariance.
q State covariance.

See also: lyap, dlyap.

8.2 gensig

[u, t] = gensig (sigtype, tau) [Function File]
[u, t] = gensig (sigtype, tau, tfinal) [Function File]
[u, t] = gensig (sigtype, tau, tfinal, tsam) [Function File]
Generate periodic signal. Useful in combination with lsim.
Inputs
sigtype = "sin"
Sine wave.
sigtype = "cos"
Cosine wave.
sigtype = "square"
Square wave.
sigtype = "pulse"
Periodic pulse.
tau Duration of one period in seconds.
tfinal Optional duration of the signal in seconds. Default duration is 5 periods.
tsam Optional sampling time in seconds. Default spacing is tau/64.
Outputs
u Vector of signal values.
t Time vector of the signal.

See also: Isim.
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8.3 impulse

impulse (sys)
impulse (sysl1, sys2, ...,
impulse (sysl1,
impulse (sys1,
impulse (sys1,
impulse (sysl1,

[y, t, x]
[y, t, x]
ly, t, xJ
[y, t, x]

= impulse (sys, t)

Function File]

sysN) Function File

’stylel’, ..., sysN, ’styleN’) Function File
, t) Functlon F 11e
, tfinal)
, tfinal, dt)

impulse (sys)
Function File
Function File
[Function File

impulse (sys, tfinal)

]

]

]

]

Functlon Flle]

]

|

impulse (sys, tfinal, dt) ]

Impulse response of LTI system. If no output arguments are given, the response is printed
on the screen.

Inputs

Sys
t

tfinal

dt

'style’

Outputs
y

t

X

LTI model.

Time vector. Should be evenly spaced. If not specified, it is calculated by the
poles of the system to reflect adequately the response transients.

Optional simulation horizon. If not specified, it is calculated by the poles of the
system to reflect adequately the response transients.

Optional sampling time. Be sure to choose it small enough to capture transient
phenomena. If not specified, it is calculated by the poles of the system.

Line style and color, e.g. '’ for a solid red line or ’-.k’ for a dash-dotted black

line. See help plot for details.

Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.

Time row vector.

State trajectories array. Has length (t) rows and as many columns as states.

See also: initial, Isim, step.

8.4 initial

initial (sys, x0) [Function File]
initial (sys1, sys2, ..., sysN, x0) [Function File]
initial (sys1, ’stylel’, ..., sysN, ’styleN’, x0) [Function File]
initial (sys1, ..., x0, t) [Function File]
initial (sys1, ..., x0, tfinal) [Function File]
initial (sys1, ..., x0, tfinal, dt) [Function File]
[y, t, x] = initial (sys, x0) [Function File]
[y, t, x] = initial (sys, x0, t) [Function File]
[y, t, x] = initial (sys, x0, tfinal) [Function File]
[y, t, x] = initial (sys, x0, tfinal, dt) [Function File]

Initial condition response of state-space model. If no output arguments are given, the response
is printed on the screen.

Inputs
Sys

State-space model.
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x0 Vector of initial conditions for each state.

t Optional time vector. Should be evenly spaced. If not specified, it is calculated
by the poles of the system to reflect adequately the response transients.

tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the
system to reflect adequately the response transients.

dt Optional sampling time. Be sure to choose it small enough to capture transient
phenomena. If not specified, it is calculated by the poles of the system.

'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.
Outputs
y Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.
t Time row vector.
b'e State trajectories array. Has length (t) rows and as many columns as states.
Example
Continuous Time: x=Ax, y=Cx, x(0) = xO0
Discrete Time:  x[k+1] = A x[k] , ylk]l =C x[k] , =x[0] = x0

See also: impulse, Isim, step.

[y, t, x] = 1sim (sys, u) Function File

1sim (sys, u, t) Function File

[y, t, x] = 1lsim (sys, u, t, x0) [Function File
Simulate LTI model response to arbitrary inputs. If no output arguments are given, the
system response is plotted on the screen.

,_|
=
c+
>4
o
I

8.5 Isim
1lsim (sys, u) [Function File]
1lsim (sys1, sys2, ..., sysN, u) [Function File]
lsim (sys1, ’stylel’, ..., sysN, ’styleN’, u) [Function File]
lsim (sysi, ..., u, t) [Function File]
1lsim (sys1, ..., u, t, x0) [Function File]
[ ]
[ ]
]

Inputs

Sys LTI model. System must be proper, i.e. it must not have more zeros than poles.

u Vector or array of input signal. Needs length(t) rows and as many columns
as there are inputs. If sys is a single-input system, row vectors u of length
length(t) are accepted as well.

t Time vector. Should be evenly spaced. If sys is a continuous-time system and ¢
is a real scalar, sys is discretized with sampling time tsam = t/(rows (u)-1). If
sys is a discrete-time system and t is not specified, vector t is assumed to be 0 :
tsam : tsam*(rows(u)-1).

x0 Vector of initial conditions for each state. If not specified, a zero vector is as-

sumed.
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Outputs

y

t

X
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Line style and color, e.g. ’r’ for a solid red line or ’-.k’ for a dash-dotted black

line. See help plot for details.

Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.

Time row vector. It is always evenly spaced.

State trajectories array. Has length (t) rows and as many columns as states.

See also: impulse, initial, step.

8.6 ramp
ramp (sys) [Function File]
ramp (sysl1, sys2 , sysN) [Function File]
ramp (sysl1, ’stylel’, ..., sysN, ’styleN’) [Function File]
ramp (sysi, ..., t) [Function File]
ramp (sysl1, ..., tfinal) [Function File]
ramp (sysl1, ..., tfinal, dt) [Function File]
[y, t, x] = ramp (sys) [Function File]
[y, t, x] = ramp (sys, t) [Function File]
ly, t, x] = ramp (sys, tfinal) [Function File]
ly, t, x] = ramp (sys, tfinal, dt) [Function File]
Ramp response of LTI system. If no output arguments are given, the response is printed on
the screen.
r(t) =t - h(t)
Inputs
Sys LTT model.
t Time vector. Should be evenly spaced. If not specified, it is calculated by the
poles of the system to reflect adequately the response transients.
tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the
system to reflect adequately the response transients.
dt Optional sampling time. Be sure to choose it small enough to capture transient
phenomena. If not specified, it is calculated by the poles of the system.
'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.
Outputs
y Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.
t Time row vector.
b'e State trajectories array. Has length (t) rows and as many columns as states.

See also: impulse, initial, 1sim, step.
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8.7 step
step (sys) [Function File]
step (sys1, sys2, ..., sysN) [Function File]
step (sys1, ’stylel ’ ..., 8ysN, ’styleN’) [Function File]
step (sysi, ..., t) [Function File]
step (sys1, ..., tfinal) [Function File]
step (sys1, ..., tfinal, dt) [Function File]
[y, t, x] = step (sys) [Function File]
[y, t, x] = step (sys, t) [Function File]
[y, t, x] = step (sys, tfinal) [Function File]
[y, t, x] = step (sys, tfinal, dt) [Function File]
Step response of LTI system. If no output arguments are given, the response is printed on
the screen.
Inputs
Sys LTT model.
t Time vector. Should be evenly spaced. If not specified, it is calculated by the
poles of the system to reflect adequately the response transients.
tfinal Optional simulation horizon. If not specified, it is calculated by the poles of the
system to reflect adequately the response transients.
dt Optional sampling time. Be sure to choose it small enough to capture transient
phenomena. If not specified, it is calculated by the poles of the system.
'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.
Outputs
y Output response array. Has as many rows as time samples (length of t) and as
many columns as outputs.
t Time row vector.
X State trajectories array. Has length (t) rows and as many columns as states.

See also: impulse, initial, Isim.
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9 Frequency Domain Analysis

[mag, pha, w] = bode (sys)
[mag, pha, wl

Function File

bode (sys, w)

9.1 bode
bode (sys) [Function File]
bode (sysl1, sys2, ..., sysN) [Function File]
bode (sysl1, sys2, ..., sysN, w) [Function File]
bode (sys1, ’stylel’, ..., sysN, ’styleN?’) [Function File]
[ ]
]

Bode diagram of frequency response.

[Function File
If no output arguments are given, the response is

printed on the screen.

Inputs

Sys LTI system. Must be a single-input and single-output (SISO) system.

w Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Outputs

mag Vector of magnitude. Has length of frequency vector w.

pha Vector of phase. Has length of frequency vector w.

w Vector of frequency values used.

See also: nichols, nyquist, sigma.

9.2 bodemag

bodemag (sys)

bodemag (sysl, sys2, ..., sysN)

bodemag (sysi, sys2, ..., sysN, w)

bodemag (sys1, ’stylel , ..., 8ysN, ’stylel’)

[mag, w] = bodemag (sys)

[mag, w] = bodemag (sys, w)
Bode magnitude diagram of frequency response.
response is printed on the screen.

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

If no output arguments are given, the

Inputs

SyS LTI system. Must be a single-input and single-output (SISO) system.

w Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black

line. See help plot for details.
Outputs
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mag Vector of magnitude. Has length of frequency vector w.

w Vector of frequency values used.

See also: bode, nichols, nyquist, sigma.

9.3 Q@lti/freqresp

H = freqresp (sys, w) [Function File]
Evaluate frequency response at given frequencies.
Inputs
sys LTT system.
w Vector of frequency values.
Outputs
H Array of frequency response. For a system with m inputs and p outputs, the array

H has dimensions [p, m, length (w)]. The frequency response at the frequency
w(k) is given by H(:,: k).

See also: dcgain.

9.4 margin

[gamma, phi, w_gamma, w_phi] = margin (sys) [Function File]

[gamma, phi, w_gamma, w_phi] = margin (sys, tol) [Function File]
Gain and phase margin of a system. If no output arguments are given, both gain and phase
margin are plotted on a bode diagram. Otherwise, the margins and their corresponding
frequencies are computed and returned. A more robust criterion to assess the stability of a
feedback system is the sensitivity Ms computed by function sensitivity.

Inputs

Sys LTI model. Must be a single-input and single-output (SISO) system.

tol Imaginary parts below tol are assumed to be zero. If not specified, default value
sqrt (eps) is taken.

Outputs

gamma Gain margin (as gain, not dBs).

phi Phase margin (in degrees).

w_gamma Frequency for the gain margin (in rad/s).
w_phi Frequency for the phase margin (in rad/s).

Algorithm
Uses function roots to calculate the frequencies w_gamma, w_phi from special polynomials
created from the transfer function of sys as listed below in section «Equations».

Equations
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CONTINUOUS-TIME SYSTEMS =
Gain Margin

L(jw) = i(jw) BTW: i(jw) = L(-jw) = conj (L(jw))
den(jw)  den(-jw)
num(jw) den(-jw) = num(-jw) den(jw)

imag (num(jw) den(-jw)) = 0
imag (num(-jw) den(jw)) =0

Phase Margin =
|num (jw) |
ILGw | = |-==———- | =1
|den(jw) |
_ 2 2
zz=Rez+ Im z

den(jw)  den(-jw)

num(jw) num(-jw) - den(jw) den(-jw) = O

real (num(jw) num(-jw) - den(jw) den(-jw)) = 0
DISCRETE-TIME SYSTEMS =
Gain Margin
jwT log =z
L(z) = L(1/2) BTW: z = e -—> W = ————=
jT

num(z) num(1/z)

den(z) den(1/z)

num(z) den(1/z) - num(1/z) den(z) = 0

Phase Margin =
| num(z) |

IL(z)| = |---—-- | =1
|den(z) |
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L(z) L(1/z) =1
num(z) num(1/z)
den(z) den(1/z)

num(z) num(1/z) - den(z) den(1/z) =0

PS: How to get L(1/z)
4 3 2
p(z) =az + bz + cz + dz + e

p(1/z)

[}
)
N

+
o
N

+
o
N
+
Q.
N
+
)

(ez + dz + cz + bz + a)/ (z )

See also: sensitivity, roots.

9.5 nichols

nichols (
nichols (
nichols (
nichols (

[mag, pha, w] = nichols (sys)

Function File

sys) [Function File]
sysi, sys2, ..., sysN) [Function File
sysl, sys2, ..., sysN, w) [Function File
sys1, ’stylel’, ..., sysN, ’styleN’) [

[

]
]
Function File]
]
]

[mag, pha, w] = nichols (sys, w) [Function File
Nichols chart of frequency response. If no output arguments are given, the response is printed
on the screen.

Inputs

Sys

w

'style’

Outputs
mag
pha

w

See also:

LTI system. Must be a single-input and single-output (SISO) system.

Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Vector of magnitude. Has length of frequency vector w.
Vector of phase. Has length of frequency vector w.

Vector of frequency values used.

bode, nyquist, sigma.
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9.6 nyquist

[re, im, w] = nyquist (sys) Function File

[re, im, w] = nyquist (sys, w) Function File
Nyquist diagram of frequency response. If no output arguments are given, the response is
printed on the screen.

nyquist (sys) [Function File]
nyquist (sysi, sys2, ..., sysN) [Function File]
nyquist (sysl1, sys2, ..., sysN, w) [Function File]
nyquist (sysi1, ’stylel’, ..., sysN, ’stylel’) [Function File]
[ ]
[ |

Inputs

Sys LTI system. Must be a single-input and single-output (SISO) system.

W Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

'style’ Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Outputs

re Vector of real parts. Has length of frequency vector w.

im Vector of imaginary parts. Has length of frequency vector w.

w Vector of frequency values used.

See also: bode, nichols, sigma.

9.7 sensitivity

[Ms, ws] = semnsitivity (L) [Function File]
[Ms, ws] = sensitivity (P, C) [Function File]
[Ms, ws] = sensitivity (P, C1,C2, ...) [Function File]

Return sensitivity margin Ms. The quantity Ms is simply the inverse of the shortest distance
from the Nyquist curve to the critical point -1. Reasonable values of Ms are in the range
from 1.3 to 2.

M, = ||S(]W)||oo

If no output arguments are given, the critical distance 1/Ms is plotted on a Nyquist diagram.
In contrast to gain and phase margin as computed by function margin, the sensitivity Ms is
a more robust criterion to assess the stability of a feedback system.

Inputs

L Open loop transfer function. L can be any type of LTI system, but it must be
square.

P Plant model. Any type of LTI system.

C Controller model. Any type of LTT system.

C1, C2, ...

If several controllers are specified, function sensitivity computes the sensitivity
Ms for each of them in combination with plant P.

Outputs
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wSs

Algorithm

Sensitivity margin Ms as defined in [1]. Scalar value. If several controllers are
specified, Ms becomes a row vector with as many entries as controllers.

The frequency [rad/s| corresponding to the sensitivity peak. Scalar value. If
several controllers are specified, ws becomes a row vector with as many entries
as controllers.

Uses SLICOT AB13DD by courtesy of NICONET e.V. (http://www.slicot.org) to calcu-
late the infinity norm of the sensitivity function.

References

[1] Astrom, K. and Hégglund, T. (1995) PID Controllers: Theory, Design and Tuning, Second
Edition. Instrument Society of America.

9.8 sigma

sigma (sys)

sigma (sys1,

sigma (sys1,
(

Function File

sys2, ..., sysN) Function File

[ ]

[ ]

sys2, . SysN, W) [Function File]

sigma (sys1, ’stylel ’, ..., sysN, ’styleN’) [Function File]
[sv, w] = sigma (sys) [Function File]
[sv, w] = sigma (sys, w) [Function File]

Singular values of frequency response. If no output arguments are given, the singular value
plot is printed on the screen.

Inputs

Sys

'style’

Outputs

SV

w

LTI system. Multiple inputs and/or outputs (MIMO systems) make practical
sense.

Optional vector of frequency values. If w is not specified, it is calculated by
the zeros and poles of the system. Alternatively, the cell {wmin, wmax} speci-
fies a frequency range, where wmin and wmax denote minimum and maximum
frequencies in rad/s.

Line style and color, e.g. 'r’ for a solid red line or ’-.k’ for a dash-dotted black
line. See help plot for details.

Array of singular values. For a system with m inputs and p outputs, the array
sv has min (m, p) rows and as many columns as frequency points length (w).
The singular values at the frequency w(k) are given by sv(:,k).

Vector of frequency values used.

See also: bodemag, svd.
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10 Pole Placement

10.1 place

f = place (sys, p) [Function File]
f = place (a, b, p) [Function File]
[f, info] = place (sys, p, alpha) [Function File]
[f, info] = place (a, b, p, alpha) [Function File]

Pole assignment for a given matrix pair (A,B) such that p = eig (A-B*F). If parameter alpha
is specified, poles with real parts (continuous-time) or moduli (discrete-time) below alpha are
left untouched.

Inputs

sys Continuous- or discrete-time LTT system.

a State matrix (n-by-n) of a continuous-time system.

b Input matrix (n-by-m) of a continuous-time system.

p Desired eigenvalues of the closed-loop system state-matrix A-B*F. length (p)
<= rows (A).

alpha Specifies the maximum admissible value, either for real parts or for moduli, of
the eigenvalues of A which will not be modified by the eigenvalue assignment
algorithm. alpha >= 0 for discrete-time systems.

Outputs

f State feedback gain matrix.

info Structure containing additional information.

info.nfp The number of fixed poles, i.e. eigenvalues of A having real parts less than alpha,

or moduli less than alpha. These eigenvalues are not modified by place.
info.nap ~ The number of assigned eigenvalues. nap = n-nfp-nup.

info.nup  The number of uncontrollable eigenvalues detected by the eigenvalue assignment
algorithm.

info.z The orthogonal matrix z reduces the closed-loop system state matrix A + B*F to
upper real Schur form. Note the positive sign in A + B*F.

Note
Place is also suitable to design estimator gains:
L = place (A.’, C.’, p).’
L = place (sys.’, p).’ # useful for discrete-time systems
Algorithm

Uses SLICOT SB01BD by courtesy of NICONET e.V. (http://www.slicot.org)
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10.2 rlocus

rlocus (sys) [Function File]
[rldata, k] = rlocus (sys, increment, min_k, max_k) [Function File]
Display root locus plot of the specified SISO system.
Inputs
Sys LTI model. Must be a single-input and single-output (SISO) system.
increment The increment used in computing gain values.
min_k Minimum value of k.
max_k Maximum value of k.
Outputs
rldata Data points plotted: in column 1 real values, in column 2 the imaginary values.
k Gains for real axis break points.

Block Diagram



48 Chapter 11: Optimal Control

11 Optimal Control

11.1 augstate

augsys = augstate (sys) [Function File]
Append state vector x of system sys to output vector y.

5.
1

Ax+Bu x=Ax+Bu
y=Cx+Du => y=Cx+Du
x=Ix+0u

11.2 dlge

[m, p, z, e] = dlge (a, g, ¢, g, I) [Function File]

[m, p, z, el = dlge (a, g ¢, q, I, S) [Function File]

[m, p, z, €] = dlge (a [, ¢, q 1) [Function File]
[ ]

[m, p, z, e] = dlge (&[], ¢, q, r, s) Function File

Kalman filter for discrete-time systems.

x[k] = Ax[k] + Bulk] + Gwl[k] (State equation)
y[k] = Cx[k] + Dulk] + v[k] (Measurement Equation)
E(w) = 0, E(v) =0, cov(w) = Q, cov(v) =R, cov(w,v) =S
Inputs
a State transition matrix of discrete-time system (n-by-n).
g Process noise matrix of discrete-time system (n-by-g). If g is empty [1, an
identity matrix is assumed.
c Measurement matrix of discrete-time system (p-by-n).
q Process noise covariance matrix (g-by-g).
r Measurement noise covariance matrix (p-by-p).
S Optional cross term covariance matrix (g-by-p), s = cov(w,v). If s is empty []
or not specified, a zero matrix is assumed.
Outputs
m Kalman filter gain matrix (n-by-p).
p Unique stabilizing solution of the discrete-time Riccati equation (n-by-n). Sym-
metric matrix.
z Error covariance (n-by-n), cov(x(k|k)-x)
e Closed-loop poles (n-by-1).

Equations
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x[klk] = x[klk-1] + M(y[k] - Cx[kl|k-1] - Dulk]) =

x[k+1|k] = Ax[k|k] + Bul[k] for S=0
x[k+1|k] = Ax[kl|k] + Bulk] + G*S*(CxP*C’ + R)"-1*(y[k] - C*x[k|k-1]) for n
E = eig(A - A*MxC) for S=0

x|
I

eig(A - A*MxC - G*Sx(CxP*C’ + Rv)~-1%C) for non-zero S

See also: dare, care, dlqr, Iqr, lge.

11.3 dlqr

g, x, 1]
g, x, 1] =
g, x, 1] =
g, x, 1] =
g, x, 1] =
g, x, 1] =

= dlqr (sys, g, 1) [Function File]
dlqr (sys, q, r, s) [Function File]
dlqr (a, b, q, 1) [Function File]
dlgr (a, b, q, r, S) [Function File]
dlgr (a, b, q, 1, [, €) [Function File]

[ ]

dlqr (a, b, q, T, s, €) Function File

Linear-quadratic regulator for discrete-time systems.

Inputs
Sys

i EEte I ©

19))]

Outputs
g

b'e
1

Equations

Continuous or discrete-time LTI model (p-by-m, n states).
State transition matrix of discrete-time system (n-by-n).
Input matrix of discrete-time system (n-by-m).

State weighting matrix (n-by-n).

Input weighting matrix (m-by-m).

Optional cross term matrix (n-by-m). If s is not specified, a zero matrix is
assumed.

Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is
assumed.

State feedback matrix (m-by-n).
Unique stabilizing solution of the discrete-time Riccati equation (n-by-n).

Closed-loop poles (n-by-1).

x[k+1] = A x[k] + B ulk], x[0] = x0 =
inf

J(x0) =SUM (x> Q x + uw” Ru + 2x’ S u
k=0

L = eig (A - BxGQ)

See also: dare, care, Iqr.
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11.4 estim

est = estim (sys, 1) [Function File]
est = estim (sys, 1, sensors, known) [Function File]
Return state estimator for a given estimator gain.
Inputs
Sys LTT model.
1 State feedback matrix.
sensors Indices of measured output signals y from sys. If omitted, all outputs are mea-
sured.
known Indices of known input signals u (deterministic) to sys. All other inputs to sys are
assumed stochastic (w). If argument known is omitted, no inputs u are known.
Outputs
est State-space model of estimator.

Block Diagram

R +
o > | [-—————- >y
| Ho——— - + + y | est | B
u ————+-——>| | -———- >(+)-————- >| |-—————- > X
| sys | S+ o +
W o———————- >| | |
o + | v

See also: kalman, lge, place.

11.5 kalman
[est, g, x] = kalman (sys, q, r) [Function File]
[est, g, x] = kalman (sys, q, 1, s) [Function File]
[est, g, x] = kalman (sys, q, r, [|, sensors, known) [Function File]
[est, g, x] = kalman (sys, q, r, s, sensors, known) [Function File]
Design Kalman estimator for LTT systems.
Inputs
Sys Nominal plant model.
q Covariance of white process noise.
r Covariance of white measurement noise.
S Optional cross term covariance. Default value is 0.
sensors Indices of measured output signals y from sys. If omitted, all outputs are mea-
sured.
known Indices of known input signals u (deterministic) to sys. All other inputs to sys
are assumed stochastic. If argument known is omitted, no inputs u are known.
Outputs
est State-space model of the Kalman estimator.

g Estimator gain.
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X

Solution of the Riccati equation.

Block Diagram

u - + -
o > | [-—————- >y
| tommmm + + y | est | -
u ————t-—=>| | -———- >(+)-—---- >| | -————-—- > X
| sys | T+ o +
W - >| | |
o + | v
Q = cov (w, w’) R = cov (v, v’) S = cov (w, v’)

See also: care, dare, estim, Iqr.

11.6 lge

[1, p, el
[1, p, el
[1, p, el
[1, p, €]
[1, p, €]
(1, p, el

= lge (sys, q, 1) [Function File]
lge (sys, q, T, s) [Function File]
1ge (a, g ¢ g 1) [Function File]
lge (a, 8. ¢ g, T, s) [Function File]

= 1qe (a7 []7 ¢ q, r) [Function Flle]
[ ]

lge (a, []; c,q, T, s) Function File

Kalman filter for continuous-time systems.

Inputs

Sys

Outputs
1

p

e

Equations

x = Ax + Bu + Gw  (State equation)
y =Cx +Du + v (Measurement Equation)
E(w) = 0, E(v) =0, cov(w) =Q, cov(v) =R, cov(w,v) =8

Continuous or discrete-time LTI model (p-by-m, n states).
State matrix of continuous-time system (n-by-n).

Process noise matrix of continuous-time system (n-by-g). If g is empty [], an
identity matrix is assumed.

Measurement matrix of continuous-time system (p-by-n).
Process noise covariance matrix (g-by-g).
Measurement noise covariance matrix (p-by-p).

Optional cross term covariance matrix (g-by-p), s = cov(w,v). If s is empty []
or not specified, a zero matrix is assumed.

Kalman filter gain matrix (n-by-p).

Unique stabilizing solution of the continuous-time Riccati equation (n-by-n).
Symmetric matrix. If sys is a discrete-time model, the solution of the corre-
sponding discrete-time Riccati equation is returned.

Closed-loop poles (n-by-1).
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.
]

Ax + Bu + L(y - Cx -Du)

3]
I

eig(A - L*C)

See also: dare, care, dlqr, 1qr, dlge.

11.7 Iqr

lg,
Lg,
Lg,
Lg,
Lg,
lg,

X,

1]
1]
1]
1]
1]
1]

1qr (sys, q, r)

1lqr (sys, q, r, 8)
1lqr (a, b, q, r

1qr (a7 b7 q7 r7 S)
1gr (a, b, q, , ], e)
1qgr (a, b, q, 1, s, €)

Linear-quadratic regulator.

Inputs

Sys

a
b
q

~

Outputs

g

X

1

Equations

See also:

Continuous or discrete-time LTI model (p-by-m, n states).

State matrix of continuous-time system (n-by-n).
Input matrix of continuous-time system (n-by-m).
State weighting matrix (n-by-n).

Input weighting matrix (m-by-m).

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

Optional cross term matrix (n-by-m). If s is not specified, a zero matrix is

assumed.

Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is

assumed.

State feedback matrix (m-by-n).

Unique stabilizing solution of the continuous-time Riccati equation (n-by-n).

Closed-loop poles (n-by-1).

x=Ax+Bu, x(0) =x0

inf

J(x0) = INT (x>’ Q x + uw” Ru + 2x’8Su

0

L = eig (A - B*G)

care, dare, dlqr.
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12 Robust Control

12.1 augw

P = augw (G, W1, W2, W3) [Function File]
Extend plant for stacked S/KS/T problem. Subsequently, the robust control problem can be
solved by h2syn or hinfsyn.

Inputs

G LTT model of plant.

Wi LTT model of performance weight. Bounds the largest singular values of sensitivity
S. Model must be empty [1, SISO or of appropriate size.

W2 LTT model to penalize large control inputs. Bounds the largest singular values of
KS. Model must be empty [1, SISO or of appropriate size.

w3 LTI model of robustness and noise sensitivity weight. Bounds the largest singular

values of complementary sensitivity T. Model must be empty [1, SISO or of
appropriate size.

All inputs must be proper/realizable. Scalars, vectors and matrices are possible instead of
LTI models.

Outputs

P State-space model of augmented plant.

Block Diagram

| Wi | -WixG | zI=Wlr - WlGu
| 0 | w2 | z2 = W2 u
P=10 | W3*G | z3 = W3 G u
|-t |
| T | -G | e = r - G u
+—————- + z1
e > Wl |-
| o +
| o + z2
| Fo—m > W2 |---—-
| | fmmmmmm +
r + e | to— + u | tom—— + vy Fo————— + z3
----- >(#)===+==>| K(s) |-——=+=->| G(s) |-—==4--==>| W3 |---—-
- tomm + to——————— + | to————— +
I I
e e +
o +
| | ———-- > z1 (plx1) zl = Wl e
r (pxl) ----- >l P(s) |-——-- > z2 (p2x1) z2 = W2 u
| | ————- > z3 (p3x1) z3 = W3y
u (mxl1l) ----- > | | ————- > e (px1) e=r -y
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mm——————— +
r ——---- > | | ————- >z
| P(s) |
u +-——->| | ——--—- + e
[ s
| |
| Hommmm - + |
o | K(s) [<-———-+
N S —— +

[1] Skogestad, S. and Postlethwaite 1. (2005) Multivariable Feedback Control: Analysis and
Design: Second Edition. Wiley.

See also: h2syn, hinfsyn, mixsyn.

12.2 fitfrd
[sys, n] = fitfrd (dat, n) [Function File]
[sys, n] = fitfrd (dat, n, flag) [Function File]

Fit frequency response data with a state-space system. If requested, the returned system is
stable and minimum-phase.

Inputs
dat
n

flag

Outputs
Sys

n

Algorithm

LTT model containing frequency response data of a SISO system.

The desired order of the system to be fitted. n <= length(dat.w).

The flag controls whether the returned system is stable and minimum-phase.
0 The system zeros and poles are not constrained. Default value.

1 The system zeros and poles will have negative real parts in the
continuous-time case, or moduli less than 1 in the discrete-time case.

State-space model of order n, fitted to frequency response data dat.

The order of the obtained system. The value of n could only be modified if inputs
n> 0 and flag = 1.

Uses SLICOT SB10YD by courtesy of NICONET e.V. (http://www.slicot.org)

12.3 h2syn

[K, N, gamma, info] = h2syn (P, nmeas, ncon) [Function File]

[K, N, gamma, infol

h2syn (P) [Function File]

H-2 control synthesis for LTI plant.

Inputs
P

nmeas

Generalized plant. Must be a proper/realizable LTI model. If P is constructed
with mktito or augw, arguments nmeas and ncon can be omitted.

Number of measured outputs v. The last nmeas outputs of P are connected to
the inputs of controller K. The remaining outputs z (indices 1 to p-nmeas) are
used to calculate the H-2 norm.
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ncon Number of controlled inputs u. The last ncon inputs of P are connected to the
outputs of controller K. The remaining inputs w (indices 1 to m-ncon) are excited
by a harmonic test signal.

Outputs

K State-space model of the H-2 optimal controller.
N State-space model of the lower LFT of P and K.
info Structure containing additional information.

info.gamma
H-2 norm of N.

info.rcond Vector rcond contains estimates of the reciprocal condition numbers of the ma-
trices which are to be inverted and estimates of the reciprocal condition numbers
of the Riccati equations which have to be solved during the computation of the
controller K. For details, see the description of the corresponding SLICOT rou-
tine.

Block Diagram

gamma = min| |N(K) || N = 1ft (P, K)
K 2
omm +
W - > | | ————- > z
I P(s) |
u +————>| | ————- + v
| o + |
| |
| Hom—m———— + |
to———= I K(s) [|<———-+
tomm - +
pomm +
wo————- > N(s) |--—-- >z
tmmm +

Algorithm
Uses SLICOT SB10HD and SB10ED by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: augw, lqr, dlqr, kalman.

12.4 hinfsyn

[K, N, gamma, info] = hinfsyn (P, nmeas, ncon) [Function File]
[K, N, gamma, info] = hinfsyn (P, nmeas, ncon, ...) [Function File]
[K, N, gamma, info] = hinfsyn (P, nmeas, ncon, opt, ...) [Function File]
[K, N, gamma, info] = hinfsyn (P, ...) [Function File]
[K, N, gamma, info] = hinfsyn (P, opt, ...) [Function File]

H-infinity control synthesis for LTI plant.
Inputs
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nmeas

ncon

opt

Outputs
K
N

info

info.gamma

info.rcond

Chapter 12: Robust Control

Generalized plant. Must be a proper/realizable LTI model. If P is constructed
with mktito or augw, arguments nmeas and ncon can be omitted.

Number of measured outputs v. The last nmeas outputs of P are connected to
the inputs of controller K. The remaining outputs z (indices 1 to p-nmeas) are
used to calculate the H-infinity norm.

Number of controlled inputs u. The last ncon inputs of P are connected to the
outputs of controller K. The remaining inputs w (indices 1 to m-ncon) are excited
by a harmonic test signal.

Optional pairs of keys and values. ’keyl’, valuel, ’key2’, value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

State-space model of the H-infinity (sub-)optimal controller.
State-space model of the lower LFT of P and K.

Structure containing additional information.

L-infinity norm of N.

Vector rcond contains estimates of the reciprocal condition numbers of the ma-
trices which are to be inverted and estimates of the reciprocal condition numbers
of the Riccati equations which have to be solved during the computation of the
controller K. For details, see the description of the corresponding SLICOT rou-
tine.

Option Keys and Values

‘method’

‘gmax’

"gmin’

"tolgam’

‘actol’

String specifying the desired kind of controller:

‘optimal’, ’opt’, o’
Compute optimal controller using gamma iteration. Default selection
for compatibility reasons.

suboptimal’, ’sub’, ’s’
Compute (sub-)optimal controller. For stability reasons, suboptimal
controllers are to be preferred over optimal ones.

The maximum value of the H-infinity norm of N. It is assumed that gmax is
sufficiently large so that the controller is admissible. Default value is 1el5.

Initial lower bound for gamma iteration. Default value is 0. gmin is only mean-
ingful for optimal discrete-time controllers.

Tolerance used for controlling the accuracy of gamma and its distance to the
estimated minimal possible value of gamma. Default value is 0.01. If tolgam
= 0, then a default value equal to sqrt(eps) is used, where eps is the relative
machine precision. For suboptimal controllers, tolgam is ignored.

Upper bound for the poles of the closed-loop system N used for determining if
it is stable. actol >= 0 for stable systems. For suboptimal controllers, actol is
ignored.

Block Diagram
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gamma = min]| [N(K) || N = 1ft (P, K)
K inf
e +
W o———-= > | | ————- >z
| P(s) |
u +————>| [ ————- + v
| Homm— - + |
| |
| oo + |
o | K(s) [<-——-+
tmm—m - +
S +
W o————= > N(s) [|--—-- > z
Hmm—m - +

Algorithm
Uses SLICOT SB10FD, SB10DD and SB10AD by courtesy of NICONET e.V. (http://www.

slicot.org)

See also: augw, mixsyn.

12.5 mixsyn

[K, N, gamma, info] = mixsyn (G, W1, W2, W3, ...) [Function File]
Solve stacked S/KS/T H-infinity problem. Mixed-sensitivity is the name given to transfer
function shaping problems in which the sensitivity function S = (I + GK)™! is shaped along
with one or more other closed-loop transfer functions such as K S or the complementary sensi-
tivity function T'=1—S = (I + GK) 'GK in a typical one degree-of-freedom configuration,
where G denotes the plant and K the (sub-)optimal controller to be found. The shaping
of multivariable transfer functions is based on the idea that a satisfactory definition of gain
(range of gain) for a matrix transfer function is given by the singular values o of the transfer
function. Hence the classical loop-shaping ideas of feedback design can be generalized to
multivariable systems. In addition to the requirement that K stabilizes G, the closed-loop
objectives are as follows [1]:

1. For disturbance rejection make 7 (S) small.

2. For noise attenuation make & (T') small.

3. For reference tracking make o(T) ~ o(T) ~ 1.

4. For input usage (control energy) reduction make (K S) small.

5. For robust stability in the presence of an additive perturbation G, = G+ A, make 7(KS)
small.

6. For robust stability in the presence of a multiplicative output perturbation G, = (I+A)G,
make 7(7") small.

In order to find a robust controller for the so-called stacked S/KS/T H., problem, the user
function mixsyn minimizes the following criterion

Kmin||[N(K)||, N =|W\S; WoKS; W,T|

[X, N] = mixsyn (G, W1, W2, W3). The user-defined weighting functions W1, W2 and W3
bound the largest singular values of the closed-loop transfer functions S (for performance),
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K S (to penalize large inputs) and T (for robustness and to avoid sensitivity to noise),
respectively [1]. A few points are to be considered when choosing the weights. The weigths
Wi must all be proper and stable. Therefore if one wishes, for example, to minimize S at low
frequencies by a weighting W1 including integral action, % needs to be approximated by Sie,
where € < 1. Similarly one might be interested in weighting K S with a non-proper weight
W2 to ensure that K is small outside the system bandwidth. The trick here is to replace a

non-proper term such as 1+ 7;s by %, where 7, < 7 [1, 2].

Inputs

G LTT model of plant.

Wi LTT model of performance weight. Bounds the largest singular values of sensitivity
S. Model must be empty [1, SISO or of appropriate size.

w2 LTT model to penalize large control inputs. Bounds the largest singular values of
KS. Model must be empty [1, SISO or of appropriate size.

w3 LTI model of robustness and noise sensitivity weight. Bounds the largest singular

values of complementary sensitivity T. Model must be empty [1, SISO or of
appropriate size.

Optional arguments of hinfsyn. Type help hinfsyn for more information.

All inputs must be proper/realizable. Scalars, vectors and matrices are possible instead of
LTT models.

Outputs

K State-space model of the H-infinity (sub-)optimal controller.
N State-space model of the lower LFT of P and K.

info Structure containing additional information.

info.gamma
L-infinity norm of N.

info.rcond Vector rcond contains estimates of the reciprocal condition numbers of the ma-
trices which are to be inverted and estimates of the reciprocal condition numbers
of the Riccati equations which have to be solved during the computation of the
controller K. For details, see the description of the corresponding SLICOT rou-
tine.

Block Diagram

| w1 s |
gamma = min| [N(K) || N=]W2KS | =1ft (P, K)
K inf | W3 T |
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+-————- + z1
o > WL |-
| +o———— +
| o + z2
I Attt >l w2 |---—-
| | to————— +
T + e | o + u | +——————— F————— + z3
————— >(+)——=+-->| K(s) |--——+-->| G(s8) |-———+-——->| W3 |---—-
- - tom + pomm— o= +
|
o
Fomm— - +
| | ————- > z1 (plx1) zl =Wl e
r (px1) ----- > P(s) |--——- > z2 (p2x1) z2 = W2 u
| | ————- > z3 (p3x1) z3 = W3y
u (mx1) ----- >| | -——-- > e (px1) e=r -y
Fommm - +
fomm— +
r —-——- >| | ————- >z
| P(s) |
u +---=>| | -———- + e
| tommm + |
| |
| tommm - + |
+-———= | K(s) |<———-+
pmmmm +
Fommm - +
r ———-- > N(s) |--—-- >z
o +
Extended Plant: P = augw (G, W1, W2, W3)
Controller: K = mixsyn (G, Wi, W2, W3)
Entire System: N = 1ft (P, K)
Open Loop: L=G=x*xK
Closed Loop: T = feedback (L)

Relies on functions augw and hinfsyn, which use SLICOT SB10FD, SB10DD and SB10AD
by courtesy of NICONET e.V. (http://www.slicot.org)

References

[1] Skogestad, S. and Postlethwaite I. (2005) Multivariable Feedback Control: Analysis and
Design: Second Edition. Wiley, Chichester, England.
[2] Meinsma, G. (1995) Unstable and nonproper weights in H-infinity control Automatica,
Vol. 31, No. 11, pp. 1655-1658

See also: hinfsyn, augw.
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12.6 mktito

P = mktito (P, nmeas, ncon) [Function File]
Partition LTI plant P for robust controller synthesis. If a plant is partitioned this way, one
can omit the inputs nmeas and ncon when calling the functions hinfsyn and h2syn.

Inputs

P Generalized plant.

nmeas Number of measured outputs v. The last nmeas outputs of P are connected to
the inputs of controller K. The remaining outputs z (indices 1 to p-nmeas) are
used to calculate the H-2/H-infinity norm.

ncon Number of controlled inputs u. The last ncon inputs of P are connected to the
outputs of controller K. The remaining inputs w (indices 1 to m-ncon) are excited
by a harmonic test signal.

Outputs

P Partitioned plant. The input/output groups and names are overwritten with

designations according to [1].

Block Diagram

min| [NCK) | | N = 1ft (P, K)
K norm
Fomm - +
W o—---- > | | ————- >z
| P(s) |
u +---=>| | -—--- + v
| to—mm———— + |
| |
| tommm - + |
o | K(s) [|<———-+
Fmmm +
e +
W o————= >l N(s) [|--—-—-- > z
Fomm +

Reference

[1] Skogestad, S. and Postlethwaite, I. (2005) Multivariable Feedback Control: Analysis and
Design: Second Edition. Wiley, Chichester, England.

12.7 ncfsyn

[K, N, gamma, info] = ncfsyn (G, W1, W2, factor) [Function File]
Loop shaping H-infinity synthesis. Compute positive feedback controller using the McFar-
lane/Glover loop shaping design procedure [1]. Using a precompensator W1 and/or a post-
compensator W2, the singular values of the nominal plant G are shaped to give a desired
open-loop shape. The nominal plant G and shaping functions W1, W2 are combined to form
the shaped plant, Gs where Gs = W2 G W1. We assume that W1 and W2 are such that Gs
contains no hidden modes. It is relatively easy to approximate the closed-loop requirements
by the following open-loop objectives [2]:
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1. For disturbance rejection make a(WoGW7) large; valid for frequencies at which o(Gg) >
1.

2. For noise attenuation make o(WoGW7) small; valid for frequencies at which 7(Gs) < 1.
3. For reference tracking make o(WoGW,) large; valid for frequencies at which o(Gg) > 1.

4. For robust stability to a multiplicative output perturbation G, = (I + A)G, make
o (W,GW;) small; valid for frequencies at which 7(Gg) < 1.

Then a stabilizing controller Ks is synthesized for shaped plant Gs. The final positive feed-
back controller K is then constructed by combining the H,, controller Ks with the shaping
functions W1 and W2 such that K = W1 Ks W2. In [1] is stated further that the given robust
stabilization objective can be interpreted as a H,, problem formulation of minimizing the
H,, norm of the frequency weighted gain from disturbances on the plant input and output
to the controller input and output as follows:

Kmin||N (K)o,
N = WL WG| (I — KG)™ (W, GW,|

[X, N] = ncfsyn (G, W1, W2, £) The function ncfsyn - the somewhat cryptic name stands
for normalized coprime factorization synthesis - allows the specification of an additional
argument, factor f. Default value £ = 1 implies that an optimal controller is required, whereas
f > 1 implies that a suboptimal controller is required, achieving a performance that is f times
less than optimal.

Inputs

G LTT model of plant.

Wi LTT model of precompensator. Model must be SISO or of appropriate size. An
identity matrix is taken if W1 is not specified or if an empty model [] is passed.

w2 LTT model of postcompensator. Model must be SISO or of appropriate size. An
identity matrix is taken if W2 is not specified or if an empty model [] is passed.

factor factor = 1 implies that an optimal controller is required. factor > 1 implies
that a suboptimal controller is required, achieving a performance that is factor
times less than optimal. Default value is 1.

Outputs

K State-space model of the H-infinity loop-shaping controller. Note that K is a
positive feedback controller.

N State-space model of the closed loop depicted below.

info Structure containing additional information.

info.gamma
L-infinity norm of N. gamma = norm (N, inf).

info.emax Nugap robustness. emax = inv (gamma).
info.Gs Shaped plant. Gs = W2 * G * W1.
info.Ks Controller for shaped plant. Ks = ncfsyn (Gs).

info.rcond Estimates of the reciprocal condition numbers of the Riccati equations and a
few other things. For details, see the description of the corresponding SLICOT
routine.

Block Diagram of N



62

Chapter 12: Robust Control
Tzl T z2
| |
wl + | o + | o +
————— >(+)———+-=>| Ks | ——==+=—==>(+) ————>| Gs [-———+
S+ tom— + - +—————— + |
| w2 | |
| |
e +
Algorithm

Uses SLICOT SB10ID, SB10KD and SB10ZD by courtesy of NICONET e.V. (http://wuw.
slicot.org)

References

[1] D. McFarlane and K. Glover, A Loop Shaping Design Procedure Using H-infinity Synthesis,
IEEE Transactions on Automatic Control, Vol. 37, No. 6, June 1992.

[2] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design:
Second Edition. Wiley, Chichester, England, 2005.
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13 Matrix Equation Solvers

= Ccare

care
care
care

(a,
(a,
(a7
(a7

b, q, 1)

b, q, r, 5)

b7 q; r, []7 e)
b, q T, s, e)

Solve continuous-time algebraic Riccati equation (ARE).

13.1 care
[x, 1, gl =
[x, 1, gl =
[x, 1, gl =
[x, 1, gl =

Inputs

a

b

q

r

S

e

Outputs

b

1

g

Equations

Real matrix (n-by-n).

Real matrix (n-by-m).

Real matrix (n-by-n).

Real matrix (m-by-m).

63

[Function File]
[Function File]
[Function File]
[Function File]

Optional real matrix (n-by-m). If s is not specified, a zero matrix is assumed.

Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is
assumed.

Unique stabilizing solution of the continuous-time Riccati equation (n-by-n).

Closed-loop poles (n-by-1).

Corresponding gain matrix (m-by-n).

-1

A’X + XA -XBR B’X+Q=0

A’X + XA - (XB + S) R

R (B’X + 8°)

eig (A - B*G)

-1

(B’X+8’) +Q=0



64

Algorithm
Uses SLICOT SB020D and SG02AD by courtesy of NICONET e.V. (http://www.slicot.
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-1
A’XE + E’XA - E’XBR BXE+ Q=0

-1
A’XE + E’XA - (E’XB + S) R (B’XE + S’) +Q =0

-1
G =R B’XE
-1
G=R (B’XE + 8)
L = eig (A - BxG, E)

See also: dare, Iqr, dlqr, kalman.

= dare (a, b, q, 1) [Function File]
dare (a, b, q, I, S) [Function File]
dare (a, b, q, 1, [, €) [Function File]

[ }

dare (a, b, q, 1, s, €) Function File

Solve discrete-time algebraic Riccati equation (ARE).

13.2 dare
[x, 1, g]
[x, 1, gl =
[x, 1, gl =
[x, 1, gl =

Inputs

a

b

q

r

s

e

Outputs

X

|

g

Equations

Real matrix (n-by-n).

Real matrix (n-by-m).

Real matrix (n-by-n).

Real matrix (m-by-m).

Optional real matrix (n-by-m). If s is not specified, a zero matrix is assumed.

Optional descriptor matrix (n-by-n). If e is not specified, an identity matrix is
assumed.

Unique stabilizing solution of the discrete-time Riccati equation (n-by-n).
Closed-loop poles (n-by-1).

Corresponding gain matrix (m-by-n).
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-1
A’XA - X - A’XB (B’XB + R) B’XA+Q =0

-1
A°XA - X - (A’XB + 8) (B’XB + R) (B’XA +8°) +Q =0

-1

G = (B’XB + R) B’XA

-1
G = (B’XB + R) (B’XA + 8?%)
L = eig (A - BxG)

-1
A°XA - E’XE - A’XB (B’XB + R) B’XA+ Q=0

-1
A°XA - E’XE - (A’XB + 3) (B’XB + R) (B’XA + 8°) +Q =0

-1

G = (B’XB + R) B’XA

-1
G= (B’XB +R) (B’XA + S?)
L = eig (A - B*G, E)

Algorithm
Uses SLICOT SB020D and SG02AD by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: care, Iqr, dlgr, kalman.

13.3 dlyap

x = dlyap (a, b) [Function File]
x = dlyap (a, b, c) [Function File]
x = dlyap (a, b, [], ) [Function File]

Solve discrete-time Lyapunov or Sylvester equations.

Equations

AXA’ - X +B =0 (Lyapunov Equation)

AXB> - X +C=0 (Sylvester Equation)

AXA’ - EXE> + B = 0  (Generalized Lyapunov Equation)
Algorithm

Uses SLICOT SB03MD, SB04QD and SGO3AD by courtesy of NICONET e.V. (http://

www.slicot.org)

See also: dlyapchol, lyap, lyapchol.
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13.4 dlyapchol

u = dlyapchol (a, b) [Function File]
u = dlyapchol (a, b, €) [Function File]
Compute Cholesky factor of discrete-time Lyapunov equations.
Equations
AUouaA - UPU + BB = 0 (Lyapunov Equation) =
AU>UA - EUVUE + BB = 0 (Generalized Lyapunov Equation.
Algorithm

Uses SLICOT SB030D and SG03BD by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: dlyap, lyap, lyapchol.

13.5 lyap

x = lyap (a, b) [Function File]
x = lyap (a, b, c) [Function File]
x = lyap (a, b, [], €) [Function File]

Solve continuous-time Lyapunov or Sylvester equations.

Equations
AX + XA + B =0 (Lyapunov Equation) =
AX + XB+C =0 (Sylvester Equation)
AXE’ + EXA> + B = 0  (Generalized Lyapunov Equation)

Algorithm

Uses SLICOT SB03MD, SB04MD and SGO3AD by courtesy of NICONET e.V. (http://

www.slicot.org)

See also: lyapchol, dlyap, dlyapchol.

13.6 lyapchol

u = lyapchol (a, b) [Function File]
u = lyapchol (a, b, €) [Function File]
Compute Cholesky factor of continuous-time Lyapunov equations.
Equations
AUV U + U”UAN + BB = 0 (Lyapunov Equation) =
AU UE + EUPUA + BB = 0 (Generalized Lyapunov Equation.
Algorithm

Uses SLICOT SB030D and SG03BD by courtesy of NICONET e.V. (http://www.slicot.
org)

See also: lyap, dlyap, dlyapchol.
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14 Model Reduction

14.1 bstmodred

[Gr, info]
[Gr, info]
[Gr, infol
[Gr, info]

= bstmodred (G, ...) [Function File]
= bstmodred (G, nr, ...) [Function File]
= bstmodred (G, opt, ...) [Function File]
= bstmodred (G, nr, opt, o) [Function File]

Model order reduction by Balanced Stochastic Truncation (BST) method. The aim of model
reduction is to find an LTI system Gr of order nr (nr < n) such that the input-output behaviour
of Gr approximates the one from original system G.

BST is a relative error method which tries to minimize

Inputs

nr

opt

Outputs
Gr

info

|GG — G,)||so = min

LTI model to be reduced.

The desired order of the resulting reduced order system Gr. If not specified, nr
is chosen automatically according to the description of key ’order’.

Optional pairs of keys and values. "keyl", valuel, "key2", value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Reduced order state-space model.

Struct containing additional information.

info.n The order of the original system G.

info.ns The order of the alpha-stable subsystem of the original system G.

info.hsv The Hankel singular values of the phase system corresponding to the
alpha-stable part of the original system G. The ns Hankel singular
values are ordered decreasingly.

info.nu The order of the alpha-unstable subsystem of both the original sys-
tem G and the reduced-order system Gr.

info.nr The order of the obtained reduced order system Gr.

Option Keys and Values

‘order’, 'nr’

‘method’

The desired order of the resulting reduced order system Gr. If not specified,
nr is the sum of NU and the number of Hankel singular values greater than
MAX (TOL1,NS*EPS); nr can be further reduced to ensure that HSV(NR-NU) >
HSV(NR+1-NU).

Approximation method for the H-infinity norm. Valid values corresponding to
this key are:

'sr-bta’, ’b’
Use the square-root Balance & Truncate method.
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"alpha

’beta’

'toll’

’tol2’
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'bfsr-bta’, ’f’
Use the balancing-free square-root Balance & Truncate method. De-
fault method.

'sr-spa’, ’s’

Use the square-root Singular Perturbation Approximation method.

"bfsr-spa’, 'p’
Use the balancing-free square-root Singular Perturbation Approxi-
mation method.

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix G.A. For a continuous-time system, ALPHA <= 0 is the boundary value
for the real parts of eigenvalues, while for a discrete-time system, 0 <= ALPHA
<= 1 represents the boundary value for the moduli of eigenvalues. The ALPHA-
stability domain does not include the boundary. Default value is 0 for continuous-
time systems and 1 for discrete-time systems.

Use [G, betax*I] as new system G to combine absolute and relative error meth-
ods. BETA > 0 specifies the absolute/relative error weighting parameter. A large
positive value of BETA favours the minimization of the absolute approximation
error, while a small value of BETA is appropriate for the minimization of the
relative error. BETA = 0 means a pure relative error method and can be used
only if rank(G.D) = rows(G.D) which means that the feedthrough matrice must
not be rank-deficient. Default value is 0.

If ’order’ is not specified, toll contains the tolerance for determining the order of
reduced system. For model reduction, the recommended value of toll lies in the
interval [0.00001, 0.001]. toll < 1. If toll <= 0 on entry, the used default value is
toll = NS*EPS, where NS is the number of ALPHA-stable eigenvalues of A and
EPS is the machine precision. If ’order’ is specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the phase
system (see METHOD) corresponding to the ALPHA-stable part of the given
system. The recommended value is TOL2 = NS*EPS. TOL2 <= TOL1 < 1.
This value is used by default if ’tol2’ is not specified or if TOL2 <= 0 on entry.

‘equil’, ’scale’

Boolean indicating whether equilibration (scaling) should be performed on system
G prior to order reduction. Default value is true if G.scaled == false and false
if G.scaled == true. Note that for MIMO models, proper scaling of both inputs
and outputs is of utmost importance. The input and output scaling can not be
done by the equilibration option or the prescale function because these functions
perform state transformations only. Furthermore, signals should not be scaled
simply to a certain range. For all inputs (or outputs), a certain change should
be of the same importance for the model.

BST is often suitable to perform model reduction in order to obtain low order design models
for controller synthesis.

Approximation Properties:

e Guaranteed stability of reduced models

e Approximates simultaneously gain and phase

e Preserves non-minimum phase zeros

Guaranteed a priori error bound

n

IGHG =Gl <2 )

J=r+1

1+Uj

1—0']‘

-1
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Algorithm
Uses SLICOT AB09HD by courtesy of NICONET e.V. (http://www.slicot.org)

14.2 btamodred

[Gr, info] = btamodred (G, ...) [Function File]
[Gr, info] = btamodred (G, nr, ...) [Function File]
[Gr, info] = btamodred (G, opt, ...) [Function File]
[Gr, info] = btamodred (G, nr, opt, ...) [Function File]

Model order reduction by frequency weighted Balanced Truncation Approximation (BTA)
method. The aim of model reduction is to find an LTI system Gr of order nr (nr < n) such
that the input-output behaviour of Gr approximates the one from original system G.

BTA is an absolute error method which tries to minimize
|G — G,|| = min

|V (G —G,) W||ew = min

where V and W denote output and input weightings.

Inputs

G LTI model to be reduced.

nr The desired order of the resulting reduced order system Gr. If not specified, nr
is chosen automatically according to the description of key ’order’.
Optional pairs of keys and values. "keyl", valuel, "key2", value2.

opt Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Outputs

Gr Reduced order state-space model.

info Struct containing additional information.

info.n The order of the original system G.
info.ns The order of the alpha-stable subsystem of the original system G.

info.hsv The Hankel singular values of the alpha-stable part of the original
system G, ordered decreasingly.

info.nu The order of the alpha-unstable subsystem of both the original sys-
tem G and the reduced-order system Gr.

info.nr The order of the obtained reduced order system Gr.
Option Keys and Values

‘order’, 'nr’
The desired order of the resulting reduced order system Gr. If not specified, nr
is chosen automatically such that states with Hankel singular values info.hsv >
toll are retained.

"left’, ’output’
LTI model of the left/output frequency weighting V. Default value is an identity
matrix.
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'right’, ’input’

‘method’

’alpha’

‘toll’

'tol2’

‘gram-ctrb’

'gram-obsv’

‘alpha-ctrb’

LTI model of the right/input frequency weighting W. Default value is an identity
matrix.

Approximation method for the L-infinity norm to be used as follows:
'sr’, b’ Use the square-root Balance & Truncate method.

'bfsr’, ’f”  Use the balancing-free square-root Balance & Truncate method. De-
fault method.

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix G.A. For a continuous-time system, ALPHA <= 0 is the boundary value
for the real parts of eigenvalues, while for a discrete-time system, 0 <= ALPHA
<= 1 represents the boundary value for the moduli of eigenvalues. The ALPHA-
stability domain does not include the boundary. Default value is 0 for continuous-
time systems and 1 for discrete-time systems.

If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced model. For model reduction, the recommended value of toll
is c¢*info.hsv(1), where c lies in the interval [0.00001, 0.001]. Default value is
info.ns*eps*info.hsv(1). If 'order’ is specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the
ALPHA-stable part of the given model. TOL2 <= TOL1. If not specified,
ns*eps*info.hsv(1) is chosen.

Specifies the choice of frequency-weighted controllability Grammian as follows:

'standard’ Choice corresponding to a combination method [4] of the approaches
of Enns [1] and Lin-Chiu [2,3]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified combination
method of [4].

Specifies the choice of frequency-weighted observability Grammian as follows:

'standard’ Choice corresponding to a combination method [4] of the approaches
of Enns [1] and Lin-Chiu [2,3]. Default method.

‘enhanced’
Choice corresponding to the stability enhanced modified combination
method of [4].

Combination method parameter for defining the frequency-weighted controlla-
bility Grammian. abs(alphac) <= 1. If alphac = 0, the choice of Grammian
corresponds to the method of Enns [1], while if alphac = 1, the choice of Gram-
mian corresponds to the method of Lin and Chiu [2,3]. Default value is 0.

‘alpha-obsv’

Combination method parameter for defining the frequency-weighted observabil-
ity Grammian. abs(alphao) <= 1. If alphao = 0, the choice of Grammian corre-
sponds to the method of Enns [1], while if alphao = 1, the choice of Grammian
corresponds to the method of Lin and Chiu [2,3]. Default value is 0.
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)

scale’

Boolean indicating whether equilibration (scaling) should be performed on system
G prior to order reduction. This is done by state transformations. Default value
is true if G.scaled == false and false if G.scaled == true. Note that for MIMO
models, proper scaling of both inputs and outputs is of utmost importance. The
input and output scaling can not be done by the equilibration option or the
prescale function because these functions perform state transformations only.
Furthermore, signals should not be scaled simply to a certain range. For all
inputs (or outputs), a certain change should be of the same importance for the
model.

‘equil’,

Approximation Properties:
e Guaranteed stability of reduced models
e Lower guaranteed error bound

e Guaranteed a priori error bound

o1 (G = G| <2 Z Oj

J=r+1
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14.3 hnamodred

[Gr, info] = hnamodred (G, ...) [Function File]
[Gr, info] = hnamodred (G, nr, ...) [Function File]
[Gr, info] = hnamodred (G, opt, ...) [Function File]
[Gr, info] = hnamodred (G, nr, opt, . [Function File]

Model order reduction by frequency weighted optimal Hankel-norm (HNA) method. The aim
of model reduction is to find an LTI system Gr of order nr (nr < n) such that the input-output
behaviour of Gr approximates the one from original system G.

HNA is an absolute error method which tries to minimize
||G — G,||g = min

|V (G — G,) W||g = min
where V and W denote output and input weightings.

Inputs
G LTI model to be reduced.
nr The desired order of the resulting reduced order system Gr. If not specified, nr

is chosen automatically according to the description of key "order".
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opt

Outputs
Gr

info
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Optional pairs of keys and values. "keyl", valuel, "key2", value2.

Optional struct with keys as field names. Struct opt can be created directly or
by function options. opt.keyl = valuel, opt.key2 = value2.

Reduced order state-space model.

Struct containing additional information.

info.n The order of the original system G.

info.ns The order of the alpha-stable subsystem of the original system G.

info.hsv The Hankel singular values corresponding to the projection
op(V)*Gl*xop(W), where G1 denotes the alpha-stable part of the
original system (. The ns Hankel singular values are ordered
decreasingly.

info.nu The order of the alpha-unstable subsystem of both the original sys-
tem G and the reduced-order system Gr.

info.nr The order of the obtained reduced order system Gr.

Option Keys and Values

‘order’, 'nr’

‘method’

Teft’, v’

right’, 'w’

The desired order of the resulting reduced order system Gr. If not specified,
nr is the sum of info.nu and the number of Hankel singular values greater than
max(toll, ns*eps*info.hsv(1);

Specifies the computational approach to be used. Valid values corresponding to
this key are:

’descriptor’
Use the inverse free descriptor system approach.

'standard’ Use the inversion based standard approach.

‘auto’ Switch automatically to the inverse free descriptor approach in case of
badly conditioned feedthrough matrices in V or W. Default method.

LTI model of the left /output frequency weighting. The weighting must be anti-
stable. ||V (G —G,)...||g = min

LTI model of the right/input frequency weighting. The weighting must be anti-
stable. ||...(G — G,) W||g = min

left-inv’, ’inv-v’

LTI model of the left /output frequency weighting. The weighting must have only
antistable zeros. ||inv(V) (G — G,)...||g = min

right-inv’, ’inv-w’

LTI model of the right/input frequency weighting. The weighting must have only
antistable zeros. ||... (G — G,) inv(W)||g = min

"left-conj’, ’conj-v’

'right-conj’,

LTI model of the left /output frequency weighting. The weighting must be stable.
[lconj(V) (G — G,)...||g = min
‘conj-w’

LTI model of the right/input frequency weighting. The weighting must be stable.
l|... (G —G,) conj(W)||g = min
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"left-conj-inv’, ’conj-inv-v’

LTI model of the left/output frequency weighting. The weighting must be
minimum-phase. ||conj(inv(V)) (G —G,)...||y = min

'right-conj-inv’, ’conj-inv-w’

a.

Ipha’

'toll’

’tol2’

LTI model of the right/input frequency weighting. The weighting must be
minimum-phase. ||...(G — G,) conj(inv(W))||g = min

Specifies the ALPHA-stability boundary for the eigenvalues of the state dynamics
matrix G.A. For a continuous-time system, ALPHA <= 0 is the boundary value
for the real parts of eigenvalues, while for a discrete-time system, 0 <= ALPHA
<=1 represents the boundary value for the moduli of eigenvalues. The ALPHA-
stability domain does not include the boundary. Default value is 0 for continuous-
time systems and 1 for discrete-time systems.

If ’order’ is not specified, toll contains the tolerance for determining the order
of the reduced model. For model reduction, the recommended value of toll is
c*info.hsv(1), where c lies in the interval [0.00001, 0.001]. toll < 1. If ‘order’ is
specified, the value of toll is ignored.

The tolerance for determining the order of a minimal realization of the
ALPHA-stable part of the given model. tol2 <= toll < 1. If not specified,
ns*eps*info.hsv(1) is chosen.

’equil’, ’scale’

Boolean indicating whether equilibration (scaling) should be performed on system
G prior to order reduction. Default value is true if G.scaled == false and false
if G.scaled == true. Note that for MIMO models, proper scaling of both inputs
and outputs is of utmost importance. The input and output scaling can not be
done by the equilibration option or the prescale function because these functions
perform state transformations only. Furthermore, signals should not be scaled
simply to a certain range. For all inputs (or outputs), a certain change should
be of the same importance for the model.

Approximation Properties:

Algorithm

e Guaranteed stability of reduced models

e Lower guaranteed error bound

e Guaranteed a priori error bound

o1 (G = G| <2 Z Oj

Jj=r+1
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14.4 spamodred

[Gr,
[Gr,
[Gr,
[Gr,

info]
info]
info]
info]

= spamodred (G, ...) [Function File]
= spamodred (G, nr, ...) [Function File]
= spamodred (G, opt, ...) [Function File]
= spamodred (G, nr, opt, ...) [Function File]

Model order reduction by frequency weighted Singular Perturbation Approximation (SPA).
The aim of model reduction is to find an LTI system Gr of order nr (nr < n) such that the
input-output behaviour of Gr approximates the one from original system G.


http://www.slicot.org

74

Chapter 14: Model Reduction

SPA is an absolute error method which tries to minimize

|G — G| = min
|V (G —G,) W||