HIGH-PERFORMANCE NUMERICAL LIBRARY FOR SOLVING EIGENVALUE PROBLEMS

FEAST Eigenvalue Solver v4.0
User Guide

http:://www.feast-solver.org

Eric Polizzi’s Research Lab.
Department of Electrical and Computer Engineering,
Department of Mathematics and Statistics,
University of Massachusetts, Amherst

References

If you are using FEAST, please consider citing one or more publications below in your work.

Main reference
E. Polizzi, Density-Matriz-Based Algorithms for Solving Eigenvalue Problems,
Phys. Rev. B. Vol. 79, 115112 (2009)
Math analysis
P. Tang, E. Polizzi, FEAST as a Subspace Iteration EigenSolver Accelerated by Approzimate Spectral Projection;
SIAM Journal on Matrix Analysis and Applications (SIMAX) 35(2), 354-390 - (2014)
Non-Hermitian solver
J. Kestyn, E. Polizzi, P. T. P. Tang, FEAST FEigensolver for Non-Hermitian Problems,
SIAM Journal on Scientific Computing (SISC), 38-5, ppS772-S799 (2016);
Hermitian using Zolotarev quadrature
S. Giittel, E. Polizzi, P. T. P. Tang, G. Viaud, Optimized Quadrature Rules and Load Balancing for the FEAST
Eigenvalue Solver,
SIAM Journal on Scientific Computing (SISC), 37 (4), pp2100-2122 (2015).
Eigenvalue count using stochastic estimates
E. Di Napoli, E. Polizzi, Y. Saad, Efficient Estimation of Figenvalue Counts in an Interval,
Numerical Linear Algebra with Applications, V23, 14, pp674-692,(2016).
Polynomial Non-linear eigenvalue problem — Residual Inverse Iterations
B. Gavin, A. Miedlar, E. Polizzi, FEAST Figensolver for Nonlinear Eigenvalue Problems
Journal of Computational Science, V. 27, 107, (2018)
IFEAST
B. Gavin, E. Polizzi, Krylov eigenvalue strategy using the FEAST algorithm with inexact system solves
Numerical Linear Algebra with Applications, vol 25, number 5, 20 pages (2018).
PFEAST
J. Kesyn, V. Kalantzis, E. Polizzi, Y. Saad,PFEAST: A High Performance Sparse Eigenvalue Solver Using
Distributed-Memory Linear Solvers
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Anal-
ysis, ACM/IEEE Supercomputing Conference (SCAAZ16), pp 16:1-16:12, (2016).

Contact

If you have any questions or feedback regarding FEAST, please send an-email to feastsolver@gmail.com.

FEAST algorithm and software team, collaborators and contributors

Code Developer/Contributors Eric Polizzi (Lead)
James Kestyn (Non-Hermitian, PFEAST),
Brendan Gavin (Non-linear, IFEAST),
Braegan Spring (SPIKE banded solver, Hybrid solver—in progress),
Stefan Giittel (Zolotarev quadrature),
Julien Brenneck (GUI configurator, Quaternion—in progress).
Collaborators : Peter Tang, Yousef Saad, Agnieszka Miedlar, Edoardo Di Napoli, Ahmed Sameh

Acknowledgments

This work has been supported by Intel Corporation and by the National Science Foundation (NSF) under
Grants #CCF-1510010, #SI2-SSE-1739423, and #CCF-1813480.

A. TABLE OF CONTENTS

[A. Table of Contents|

1 Background|
1.1 The FEAST Algorithm|.
L2 The FREAST Solver] o o oo

|2 Installation and Setup: A Step by Step Procedure|

2.1 Installation|
2.2 Compilation|
2.3 Linking FEAST|.
2.4 HelloWorld Example (F90, C, MPI-F90, MPI-C)

3.4 FEAST Polynomial (quadratic, cubic, quartic, etc.)
3.5 IFEAST (FEAST w/o Factorization)
3.6 PFEAST and PIFEAST (MPl-solver)|

4 Complement)|
4.1 Matrix storage|

13
13
17
21
24
27
29

1 Background

“The solution of the algebraic eigenvalue problem has for long had a particular fascination for me because it illustrates
so well the difference between what might be termed classical mathematics and practical numerical analysis. The
etgenvalue problem has a deceptively simple formulation and the background theory has been known for many years;
yet the determination of accurate solutions presents a wide variety of challenging problems.”

J. H. Wilkinson- The Algebraic Eigenvalue Problem- 1965

The eigenvalue problem is ubiquitous in science and engineering applications. It can be encountered
under different forms: Hermitian or non-Hermitian, and linear or non-linear. The eigenvalue problem has
led to many challenging numerical questions and a central problem: how can we compute eigenvalues and
eigenvectors in an efficient manner and how accurate are they?

The FEAST library package represents an unified framework for solving various family of eigenvalue
problems and addressing the issues of numerical accuracy, robustness, performance and parallel scalability.
Its originality lies with a new transformative numerical approach to the traditional eigenvalue algorithm
design - the FEAST algorithm.

1.1 The FEAST Algorithm

The FEAST algorithm is a general purpose eigenvalue solver which takes its inspiration from the density-
matrix representation and contour integration technique in quantum mechanicﬂ The algorithm gathers key
elements from complex analysis, numerical linear algebra and approximation theory, to construct an optimal
subspace iteration technique making use of approximate spectral projectorsﬂ FEAST can be applied for
solving both standard and generalized forms of the Hermitian or non-Hermitian problems (linear or non-
linear), and it belongs to the family of contour integration eigensolvers. Once a given search interval is
selected, FEAST’s main computational task consists of a numerical quadrature computation that involves
solving independent linear systems along a complex contour, each with multiple right hand sides. A Rayleigh-
Ritz procedure is then used to generate a reduced dense eigenvalue problem orders of magnitude smaller
than the original one (the size of this reduced problem is of the order of the number of eigenpairs inside
the search interval/contour). FEAST offers a set of appealing features: (i) Remarkable robustness with
well-defined convergence rate; (ii) All multiplicities naturally captured; (iii) No explicit orthogonalization
procedure on long vectors required in practice; (iv) Reusable subspace as initial guess when solving a series
of eigenvalue problems; and (v) Efficient use of both blocked BLAS-3 operations and parallel resources for
solving the linear systems with multiple right hand sides. FEAST can exploit a key strength of modern
computer architectures, namely, multiple levels of parallelism. Natural parallelism appears at three different
levels (L1, L2 or L3): (L1) search contours can be treated separately (no overlap), (L2) linear systems can
be solved independently across the quadrature nodes of the complex contour, and (L3) each complex linear
system with multiple right-hand-sides can be solved in parallel. Parallel resources can be placed at all three
levels simultaneously in order to achieve scalability and optimal use of the computing platform. Within a
parallel environment, the main numerical task can be reduced to the solution of a single linear system using
direct or iterative parallel solvers.

1.2 The FEAST Solver
FEAST release dates with main features are listed below:

v1.0 (Sep. 2009): Hermitian problem (standard/generalized)
v2.0 (Mar. 2012): SMP+MPI4RCI interfaces
v2.1 (Feb. 2013): Adoption by Intel-MKL
v3.0 (Jun. 2015): Support for non-Hermitian
(

v4.0 (Feb. 2020): Residual inverse iterations - mixed precision - IFEAST (FEAST w/o factorization)
- PFEAST (3 MPI levels) - Support for non-linear (polynomial) - Support for extreme eigenvalues
(lowest /largest)

LE. Polizzi, Phys. Rev. B. Vol. 79, 115112 (2009)
2P, Tang, E. Polizzi, SIMAX 35(2), 354455390 - (2014)

The FEAST package v2.1 has been featured as Intel-MKL’s principal HPC eigensolver since ZOlﬂ The
current version of the FEAST package (v4.0) released in Feb. 2020 represents a significant upgrade since
the entire FEAST package has been re-coded to perform residual inverse iterationsﬂ As a result, v4.0

is in

average much faster than v2.1 or v3.0 (x3 — 4 using new default optimization parameters), and it

became possible to implement new important features such as IFEAST (using Inexact Iterative solver) and
Non-linear polynomial FEAST. Furthermore, v4.0 features PFEAST with its 3-MPI levels of parallelism.

FEAST is a comprehensive numerical library offering both simplicity and flexibility, and packaged around
a “black-box” interface as depicted in Figure [I] for the Hermitian problem.

[/\mm- /\mru.-}- *'11‘(]
FEAST SOLVER BLACK-BOX Figure 1: “Black-boz” interface for the Hermitian

interval and a search subspace size My. It includes fea-

----------------------- 1 problem. In normal mode, FEAST requires a search
-

e Y tures such as reverse communication interfaces (RCI)

/ = > (User) Solve
M | " B—-A)Q. =Y that are matriz format independent, and linear system
== = X : © solver independent, as well as ready to use driver in-
Solve 2 terfaces for dense, banded and sparse systems. For the
Ax — ABx é driver interfaces the “black-box” region extends then
/’ v to the right dashed box, and only the system matri-
(User) Compute ces are required as inputs from the users. The RCI

interfaces represent the kernel of FEAST which can
be customized by the users to allow maximum flexibil-
ity for their specific applications. Users have then the
possibility to integrate their own linear system solvers

e ‘X_ BY =X (direct or iterative - with or without preconditioner)

g
//%//4— AY = X
| x
] v e
| — | U

W = and handle their own matriz-vector multiplication pro-

i cedure.

{Av-xi]?—l,:‘lf

The current main features of the FEAST v4.0 package include:

Standard or Generalized Hermitian and non-Hermitian eigenvalue problems (left/right eigenvectors
and bi-orthonormal basis);

Polynomial eigenvalue problems such as quadratic, cubic, quartic, etc. (left/right eigenvectors);

Finding eigenpair within a search contour (normal mode); Finding extreme eigenvalues (lowest/largest)
for sparse Hermitian systems;

Real/Complex arithmetic and mixed precision (single precision operations leading to double precision
final results);

Two libraries: SMP version (one node), and MPI version (multi-nodes);
Reverse communication interfaces (RCI).

Driver interfaces for dense (using LAPACK), banded (using SPIKE), and sparse-CSR formats (using
MKL-PARDISO);

IFEAST- FEAST w/o factorization for sparse-CSR drivers (using BiCGStab);

PFEAST- FEAST using 3 levels of MPI parallelism for HPC (MPI solvers includes MKL-Cluster-
PARDISO and PBiCGStab); Sparse and RCI interfaces compatible with local row-distributed data.

A set of flexible and useful practical options (quadrature rules, contour shapes, stopping criteria, initial
guess, fast stochastic estimates for eigenvalue counts, etc.)

Portability: FEAST routines can be called from any Fortran or C codes.
FEAST interfaces only require (any optimized) LAPACK and BLAS packages.
Large number of driver examples, utility routines, and documentation.

3https://software.intel.com/en-us/articles/introduction-to-the-intel-mkl-extended-eigensolver
4B. Gavin, A. Miedlar, E. Polizzi, Journal of Computational Science, V. 27, 107, (2018); B. Gavin, E. Polizzi, in preparation
(2020).

2 Installation and Setup: A Step by Step Procedure

2.1 Installation

Please follow the following steps (here for Linux/Unix systems):

1. Download the latest FEAST package version feast_4.0.tgz in http://www.feast-solver.org

2. Put the file in your preferred directory such as $HOME directory or (for example) /opt/ directory if you

have ROQOT privilege.

3. Execute: tar -xzvf feast_ 4.0.tgz to create the following FEAST tree directory.

FEAST
I
4.0
I
I I | | I [
doc example include 1ib src utility
I | I [
| -FEAST |-x64 | -kernel | -FEAST
| -PFEAST-L2 | -dense | -PFEAST
| -PFEAST-L2L3 | -banded |-data
| -PFEAST-L1L2L3 | -sparse

4. If <FEAST directory> denotes the package’s main directory after installation, for example
~/home/FEAST/4.0 or /opt/FEAST/4.0,

it is not mandatory but recommended to define the Shell variable $FEASTROOT, e.g.

export FEASTROOT=<FEAST directory> I or Iset FEASTROOT=<FEAST directory>

respectively for the BASH or CSH shells. One of this command can be placed in the appropriate shell
startup file in $HOME (i.e .bashrc or .cshrc).

2.2 Compilation

Go to the directory $FEASTROOT/src and execute make to see all available options. The same FEAST source
code is used for compiling FEAST-SMP (libfeast) and/or FEAST-MPI (1ibpfeast). The command is:

make ARCH=<arch> F90=<f90> MPI=<mpi> MKL=<mkl> {feast, pfeast}‘

where you can select the following options:

<arch> : it is the name of the directory $FEASTROOT/1ib/<arch> where the FEAST libraries will be located

once compiled (you can use the name of your architecture). Default is x64
<f90> : it is your own Fortran90 compiler (possible choices: ifort, gfortran, pgf90). Default is ifort
<mpi> : (mandatory for compiling libpfeast only) it is your MPI library (possible choices: impi, mpich,
openmpi). Defaults to impi (intel MPI)

<mkl> : it enables Intel-MKL math library instructions (possible choices: yes, no). Default is yes.

e if <mkl>=yes, at the linking stage, FEAST will have to be linked with Intel MKL.

e if <mkl>=no, at the linking stage, FEAST can be linked with any BLAS/LAPACK. Not using
MKL will impact the behavior and performance of the FEAST sparse Driver interfaces: (i) it
would not be possible to use MKL-PARDISO and cluster-MKL-PARDISO so the FEAST sparse
interfaces will instead be calling IFEAST (BiCGStab); (ii) in-built sparse mat-vec routines (used
by the IFEAST sparse interfaces) will be slower.

For example, if the above default options look fine with you, just use:

e make feast
to compile the FEAST-SMP library and create the file libfeast.a in $FEASTRO0T/1ib/<arch>

e make pfeast
to compile the FEAST-MPI library and create the file libpfeast.a in $FEASTRO0T/1ib/<arch>

Congratulations, FEAST is now successfully installed and compiled on your computer !!

2.3 Linking FEAST
In order to use the FEAST library for your main application code, you will then need to add the following
instructions in your Makefile:

e for the LIBRARY PATH: -L$FEASTRO0T/1lib/<arch>
o for the LIBRARY LINKS using FEAST-SMP: -1feast
using FEAST-MPI: -1pfeast
e for the INCLUDE PATH (mandatory only for C codes): -I$(FEASTROOT)/include

Remarks
1- If FEAST was compiled with the option MKL=yes, your must also link with the MKL libraries. Otherwise,
you can link with any BLAS, LAPACK libraries.
2- If you use the FEAST banded interfaces, you need to install the SPIKE solver www.spike-solver.org
SPIKE must be compiled using the same Fortran compiler used for compiling FEAST.
3- For C codes, the user must include the following instructions in the header:

1 #include "feast.h'

2 #include "feast_ dense.h" //for feast dense interfaces

3 #include "feast__banded.h" //for feast banded interfaces
.+ #include "feast sparse.h" //for feast sparse interfaces

Using PFEAST (MPI sparse linear system solver), you must use instead:

1 #include "pfeast.h"
2 #include "pfeast_sparse.h"

www.spike-solver.org

1
2
3

1

37

2.4 HelloWorld Example (F90, C, MPI-F90, MPI-C)

This example solves a 4-by-4 real symmetric standard eigenvalue system Ax = Ax (using dense format)
where

2 1 -1 0
103 -1 -1
A=l1 1 3 (1)

o -1 -1 2

The four eigenvalue solutions are A = {0, 2,4, 4}. Let us suppose that one can specify a search interval (such
as [3,5]), a single call to the dfeast_syev subroutine should return the solutions associated with {4,4}. The
FEAST parameters need first to be set to their default values by a call to the feastinit subroutine. Below,
we provide examples written in F90, C, MPI-F90, and MPI-C.

F90

A Fortran90 source code of helloworld.f90 is provided below:

program helloworld

implicit none

'l 4x4 eigenvalue system

integer ,parameter :: N=4

character (len=1) :: UPLO="F’ | 'L’ or 'U’ also fine

double precision ,dimension (N«N) :: A=(/ 2.0d0, —1.0d0,—1.0d0, 0.0d0,&
&—-1.0d0, 3.0d0,—1.0d0,—-1.0d0,&
&—-1.0d0, —1.0d0, 3.0d0,—1.0d0,&
& 0.0d0, —1.0d0,-1.0d0, 2.0d0/)

'l input parameters for FEAST

integer ,dimension (64) :: fpm

integer :: M0=3 ! search subspace dimension

double precision :: Emin=3.0d0, Emax=5.0d0 ! search interval
I'l output variables for FEAST

double precision ,dimension (:),allocatable :: E, res

double precision ,dimension (:,:),allocatable :: X

double precision :: epsout

integer :: loop,info M, i

'l Allocate memory for eigenvalues.eigenvectors ,residual

allocate (E(MO) ,X(N,M0),res (MO0))

Prerrrrrrl FEAST
call feastinit (fpm)
fpm(1)=1 !! change from default value (print info on screen)

call dfeast_syev (UPLO,N,A N, fpm,epsout ,loop ,Emin,Emax,M0,E,X,M, res ,info)

Prrrrrrrtt REPORT
if (info==0) then
print =,’Solutions (Eigenvalues/Eigenvectors/Residuals)
do i=1M
print =, 'E=" E(i),’X=",X(:,1i), Res=",res(i)
print *x,’’
enddo
endif

)

end program helloworld

To create the executable, compile and link the source program with the feast library, one can use (for
example):

° ‘ifort -0 helloworld helloworld.f90 -L$FEASTROO0T/1lib/<arch> -1lfeast -mkl
if FEAST was compiled with ifort and MKL flag was set to 'yes’.

gfortran -o helloworld helloworld.f90 -L$FEASTROOT>/lib/<arch> -1lfeast

e | -Wl,-start-group -1lmkl_gf 1p64 -1mkl_gnu_thread -1lmkl_core -W1l,-end-group -lgomp
-lpthread -1m -1dl
if FEAST was compiled with gfortran and MKL flag was set to ’yes’.

Remarks:

1-Many other options are possible. For example, you can link with your own BLAS/LAPACK libraries, you
can compile FEAST with ifort and compile the helloworld example using gfortran via extra flag options,
or vice-versa, etc.

2- FEAST is using a linear solver that can be threaded (the LAPACK dense solver is used for the helloworld
example). Using MKL, you can control the number of threads by setting up the value of MKL_NUM_THREADS.
For example, in BASH shell:

’export MKL_NUM_THREADS=<omp>

where < omp > represents the number of threads (cores).

A run of the resulting executable looks like:

./helloworld

and the output of the run should be:

ok ok ok ok ok ok skok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok k ok

sxkkkokickkkk FEAST v4.0 BEGIN skkoskokokokskokskokkokokskkksk

ook ok ok ko ok ok ok skok ok ok skok ok ok ook ok ok sk ok ok ok ok k ok

Routine DFEAST_SYEV

Solving AX=eX with A real symmetric

List of input parameters fpm(1:64)-- if different from default

fpm(1)= 1
| FEAST data |
Emin 3.0000000000000000E+00 |
Emax 5.0000000000000000E+00 |

8 (half-contour) |

Gauss

0.30

LAPACK dense

Single precision |

Yes |
|
|
|
|

#Contour nodes
Quadrature rule
Ellipse ratio y/x
System solver

FEAST uses MKL?
Fact. stored? Yes
Initial Guess Random
Size system 4
Size subspace 3
| FEAST runs |
#It | #Eig | Trace | Error-Trace | Max-Residual
0 2 7.9999999999999964E+00 1.0000000000000000E+00 2.2017475048923482E-08
1 2 7.9999999999999982E+00 3.5527136788005011E-16 1.0614112804180586E-15

==>FEAST has successfully converged with Residual tolerance <1E-12
FEAST outside it.
Eigenvalue found 2 from 3.9999999999999987E+00 to 4.0000000000000000E+00

| FEAST-RCI timing |

| Fact. cases(10,20) | 0.0009

Solve cases(11,12)] 0.0197

| |
Axx cases(30,31)	0.0000
Bxx cases(40,41)	0.0000
Misc. time	0.0004
Total time (s)	0.0210

sk ok ok sk sk sk sk ok ok ok ok ok sk sk sk ok sk o ok sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok sk sk sk sk sk o ok ok
sokokokokokokokokokok FEAST— ENDsoskokskosk sk okskskosk ok ok o ke ksk sk sk ok ok o ok ok
sk ok ok sk sk sk sk ok o ok ok sk sk sk sk sk ok ok sk sk sk sk sk sk ok sk sk sk sk ok sk ok ok ok sk sk sk sk ok ok ok ok

Solutions (Eigenvalues/Eigenvectors/Residuals)

E= 4.00000000000000 X= -0.409757405384329 4.544205370554897E-003
0.814970605398106 -0.409757405384329 Res= 1.061411280418059E-015
E= 4.00000000000000 X= -0.286529001556041 0.866013481533371
-0.292955478421287 -0.286529001556041 Res= 6.481268641478987E-016
%\end{verbatim}
C

Similarly to the F90 example, the corresponding C source code for the helloworld example (helloworld.c)
is provided below:

1 #include <stdio.h>
2 #include <stdlib .h>

3 #include "feast.h'

. #include "feast_dense.h"
5 int main() {

/% 4x4 eigenvalue system %/

int N=4;

char UPLO="F’; // 'L’ and ’'U’ also fine
double A[16]={2.0,-1.0,-1.0,0.0,—-1.0,3.0,—1.0
/* input parameters for FEAST x/

int fpm[64];

int M0=3; //search subspace dimension
double Emin=3.0, Emax=5.0; // search interval
/* output variables for FEAST x/

double *E, *xres, *X;

double epsout;

int loop,info ,M,1i;

,—1.0,-1.0,-1.0,3.0,—-1.0,0.0,—-1.0,—-1.0,2.0};

/* Allocate memory for eigenvalues.eigenvectors/residual =/

E=calloc (MO, sizeof (double)); //eigenvalues
res=calloc (MO, sizeof (double));//eigenvectors
X=calloc (N*MO, sizeof (double));//residual

Jx LELELLEELL FEAST IPIIDDDD &/
feastinit (fpm);
fpm[0]=1; /xchange from default value x/

dfeast__syev(&UPLO,&N, A, &LDA, fpm,& epsout ,&loop

if (info==0)

,&Emin,&Emax,&M0,E, X, &M, res ,&info);

printf("Solutions. (Eigenvalues/Eigenvectors/Residuals)\n");

for (i=0;i<=M-1;i=i+1){

printf ("E=%.15e. X=%.15¢,%.15e¢.%.15¢,%.15¢ Res=%.15e\n" ,

w (B) % (XisN) ,x (X141 *N) | (X+2+
}
}

return O;

}

i#N) % (X+3+1*N) % (res+i));

To create the executable, compile and link the source program with the feast library, one can use (for
example):

10

icc -qopenmp -I$FEASTROOT/include -o helloworld helloworld.c -L$FEASTROOT/lib/x64
-1lfeast -mkl -lirc -lifcore -lifcoremt
if FEAST was compiled with ifort and MKL flag was set to ’yes’.

gcc —fopenmp -I$FEASTROOT/include -o helloworld helloworld.c -L$FEASTROOT/lib/x64
e | -1feast -Wl,-start-group -1mkl_gf 1p64 -1lmkl_gnu_thread -1lmkl_core -W1l,-end-group
-lgomp -lpthread -1m -1dl -lgfortran

if FEAST was compiled with gfortran and MKL flag was set to ’yes’.

MPI-F90

FEAST can be straightforwardly parallelized using MPI at level L2 (where the FEAST inner linear sys-
tems are automatically distributed among MPI processes). As a reminder level L1 corresponds to the
parallelization of the search interval, and level L3 corresponds to the parallelization of each linear system
using row-data-distribution and MPI solver. Examples using L1-L2-L3 (MPI-MPI-MPI) are discussed in the
PFEAST Section [3.6).

You can create the file phelloworld.f90 by cc-paste the content of helloworld.f90 and by just adding
a few lines at the beginning and at the end of the program, i.e.

1 'l add at the very beginning
2 include ’mpif.h’

y 1111 add after variable declarations
5 integer :: code
6 call MPI_INIT(code)

9 1111 add at the end
v call MPI_FINALIZEcode)

Your program must be compiled using the same MPI implementation used to compile the FEAST-MPI
library. Once compiled, your source program must now be linked with the pfeast library. You can use (for
example):

. ‘mpiifort -o phelloworld phelloworld.f90 -L$FEASTROOT/lib/<arch> -lpfeast -mkl ‘
if FEAST was compiled with ifort, MKL flag was set to ’yes’, and MPI was chosen to be 'impi’ (intel
mpi).

mpif90.mpich -fc=gfortran phelloworld.f90 -o phelloworld -L$FEASTROOT>/1ib/<arch>

o | -lpfeast -Wl,-start-group -1lmkl_gf 1p64 -1lmkl_gnu_thread -lmkl_core -Wl,-end-group
-lgomp -lpthread -1m -1d1 -lifcore

if FEAST was compiled with gfortran, MKL flag was set to ’yes’, and MPI was chosen to be 'mpich’.

A run of the resulting executable looks like:

‘mpirun -ppn 1 -n <np> ./phelloworld

where < np > represents the number of MPI processes (here we also choose 1 MPI process per compute node
with the option -ppn 1)

Remarks:

1-Scalability performances will be optimal here when the number of MPI processes <np> reaches the number
of contour points (provided by the default value fpm(2)=8 in this example).

2-Since FEAST is also threaded, make sure that your number of selected threads <omp> times the number of
mpi processes <np> for a given compute node (i.e. <omp>*<np>) does not exceed the number of your physical
cores.

11

MPI-C

Similarly to the MPI-F90 example, You can create the file phelloworld.c by cc-paste the content of
helloworld.c and by just adding a few lines at the beginning and at the end of the program, i.e.

1 111l add at the very beginning
2 #include <mpi.h>

1 111l change the argument list of the main function
int main(int argc, char s*xargv)

7 1111 add after variable declarations
8 MPI_Init(&argce,&argv);

10 1111 add at the end
11 MPI_Finalize ();

Your program must be compiled using the same MPI implementation used to compile the FEAST-MPI
library. Once compiled, your source program must now be linked with the pfeast library. You can use (for
example):

mpiicc -qopenmp -I$FEASTROOT/include -o phelloworld phelloworld.c
-L$FEASTROOT/1ib/x64 -lpfeast -mkl -lirc -lifcore -lifcoremt

if FEAST was compiled with ifort, MKL flag was set to ’yes’, and MPI was chosen to be 'impi’ (intel
mpi).

mpicc -cc=gcc -fopenmp -I$FEASTROOT/include -o phelloworld phelloworld.c

e | -L$FEASTROOT/1ib/x64 -lpfeast -Wl,-start-group -1lmkl_gf 1p64 -lmkl_gnu_thread
-lmkl_core -Wl,-end-group -lgomp -lpthread -1lm -1dl1 -lgfortran

if FEAST was compiled with gfortran, MKL flag was set to ’yes’, and MPI was chosen to be 'mpich’.

12

3 FEAST Interfaces
3.1 At a Glance

There are the two different types of interfaces available in the FEAST library:

‘ Driver interfaces ‘

e Optimal drivers acting on commonly used matrix data storage (dense, banded, sparse-CSR, row-

distributed CSR).

e Use predefined linear system solvers: LAPACK (for dense), SPIKE (for banded), MKL-PARDISO (for
sparse-CSR and FEAST), BiCGStab (for sparse-CSR and IFEAST), MKL-CLUSTER-PARDISO (for
row-distributed CSR and PFEAST), PBiCGStab (for row-distributed CSR and PIFEAST).

Reverse communication interfaces (RCI) ‘

e Constitute the kernel of FEAST, independent of the matrix data formats, so users can easily customize
FEAST with their own explicit or implicit data format (or row-distributed data format).

e Mat-vec routines and direct/iterative linear system solvers must also be provided by the users.

Here is the complete list of all FEAST v4.0 interfaces (186 in total).

Properties

[

RCI interfaces

|

Dense/Banded interfaces

|

Sparse interfaces

Linear AX = BXA

Real Sym. A = AT B spd
Complex Herm. A = A” B hpd
Complex Sym. A = AT, B = BT
Real General

Complex General

dfeast_srci{x}
zfeast_hrci{x}
zfeast_srci{x}
zfeast_grci{x}
zfeast_grci{x}

dfeast_{sy,sb}{ev,gvi{x}
zfeast_{he,hb}{ev,gvi{x}
zfeast_{sy,sb}ev,gvi{x}
dfeast_{ge,gb}{ev,gvi{x}
zfeast_{ge,gb}{ev,gv}i{x}

{p}d{i}feast_scsr{ev,gvi{x}
{p}z{i}feast_hcsr{ev,gv}i{x}
{p}z{i}feast_scsr{ev,gvi{x}
{p}d{i}feast_gcsr{ev,gvi{x}
{p}z{i}tfeast_gcsr{ev,gvi{x}

Polynomial) A, XA' =0

Real Sym. A; = AT
Complex Herm. A; = AF
Complex Sym. A; = AT
Real General

Complex General.

zfeast_srcipev{x}
zfeast_grcipev{x}
zfeast_srcipev{x}
zfeast_grcipev{x}
zfeast_grcipev{x}

dfeast_sypev{x}
zfeast_hepev{x}
zfeast_sypev{x}
dfeast_gepev{x}
zfeast_gepev{x}

{p}d{i}feast_scsrpev{x}
{p}z{i}feast_hcsrpev{x}
{p}z{i}feast_scsrpev{x}
{p}d{i}tfeast_gcsrpev{x}
{p}z{i}feast_gcsrpev{x}

where

(direct or iterative).

dfeast and zfeast stand for real double precision and complex double precision, respectively.

{ev,gv} stands for either standard (i.e. B=I) or generalized eigenvalue problems.

{x} is optional - stands for the expert FEAST version which enables customized quadrature nodes/weights.
{i} is optional - stands for the IFEAST version of the sparse interfaces using inexact iterative solver.
{p} is optional - stands for the PFEAST version of the sparse interfaces using distributed MPI solvers

In addition, all the input parameters for the FEAST algorithm are contained into an integer array of size
64 named here fpm. Prior calling the FEAST interfaces, this array needs to be initialized. There exists two

FEAST initialization routines:

feastinit (fpm)

initialization for FEAST

pfeastinit(fpm,L1_comm_world,nL3)

initialization for PFEAST (needed if the sparse interfaces use a MPI solver)

All input FEAST parameters are then set to their default values. The detailed list of the fpm parameters is
given in Table[I] Users can modify their values accordingly before calling the FEAST interfaces.

13

fpm(i) F90 Description Default values
fpm[i-1] C

Runtime and algorithm options
i=1 Print runtime comments 0
0: Off || 1: On screen

n<0: Write/Append comments in the file feast<|n|>.log

i=2 #contour points for Hermitian FEAST (half-contour) 8 using FEAST

if £pm(16)=0,2, values permitted (1 to 20, 24, 32, 40, 48, 56) | 4 using IFEAST

if fpm(16)=1, all positive values permitted 3 using Stochastic fpm(14)=2
i=3 Stopping c(o)nvergence criteria in double precision (0 to 16) 12

€ = 107fpm 3
i=4 Maximum number of FEAST refinement loop allowed (> 0) | 20 using FEAST

50 using IFEAST

i=5 Provide initial guess subspace (0: No; 1: Yes) 0
i=6 Convergence criteria (for solutions in the search contour) 1

0: Using relative error on the trace epsout i.e. epsout< ¢
1: Using relative residual res i.e. max; res(i) < e

i=8 #contour points for non-Herm./poly. FEAST (full-contour) | 16 using FEAST
if fpm(16)=0, values permitted (2 to 40, 48, 64, 80, 96, 112) | 8 using IFEAST
if fpm(16)=1, all values permitted (>2) 6 using Stochastic fpm(14)=2
i=9 L2 communicator for PFEAST set by call to pfeastinit
i=10 Store linear system factorizations (0: No; 1: Yes). 1 using all Driver interfaces
0 using RCI interfaces
i=14 0: FEAST normal execution 0

1: Return subspace Q after 1 contour
2: Stochastic estimate of #eigenvalues inside search contour

i=15 #Contours for non-Hermitian or polynomial FEAST. 0 using non-sym. drivers
0: two-sided contour (compute right/left eigenvectors) 1 using Stochastic fpm(14)=2
1: one-sided contour (compute only right eigenvectors) 2 using sym. drivers
2: one sided contour (left=right* eigenvectors)
i=16 Integration type (0: Gauss 1: Trapezoidal; 2: Zolotarev) 0 for Hermitian FEAST
Remark: option 2 only for Hermitian 1 for non-Herm./poly. FEAST
1 for IFEAST
i=18 Ellipse contour ratio ’vertical axis’/’horizontal axis’ (> 0) 30 for Hermitian FEAST
fpm(18) /100 = ratio 100 for non-Herm. /poly. FEAST
100 for IFEAST
i=19 Ellipse rotation angle in degree from vertical axis [-180:180] | 0
Remark: only for non-Hermitian
i=49 L3 communicator for PFEAST set by call to pfeastinit
Driver interface options
i=40 Search interval option for sparse Hermitian drivers 0

0: search interval provided by user

-1: search M0/2 lowest eigenvalues- return search interval
1: search M0/2 largest eigenvalues- return search interval
i=41 Matrix scaling for sparse drivers (0: No; 1: Yes). 1
i=42 Mixed Precision for all drivers 1
0: use double precision linear system solvers
1: use single precision linear system solvers

i=43 Automatic switch from FEAST to IFEAST drivers 0
(0O:feast,l:ifeast)
i=45 Accuracy of BiCGStab in IFEAST p = 10~ 7% 1
i=46 Maximum #iterations for BiCGStab in IFEAST 40
i=60 Output: returns the total number of BicGstab iterations N/A
A1l Others | Reserved values and/or Undocumented options N/A

Table 1: List FEAST parameters with default input values.

Remark: Using the C language, the components of the fpm array starts at 0 and stops at 63. Therefore, the
components fpm[j] in C (j=0-63) must correspond to the components fpm(i) in Fortran (i=1-64) specified
above (i.e. fpm[i-1]1=£fpm(i)).

14

Errors and warnings encountered during a run of the FEAST package are stored in an integer variable, info.

If the value of the output info parameter is different than “0”, either an error or warning was encountered.
The possible return values for the info parameter along with the error code descriptions, are given in Table[2]
l info Classification Description ‘

202 Error Problem with size of the system N

201 Error Problem with size of subspace MO

200 Error Problem with Emin, Emax or Emid, r

(100 + 4) Error Problem with i*" value of the input FEAST parameter (i.e fpm(i))

7 Warning The search for extreme eigenvalues has failed, search contour must be set by user

6 Warning FEAST converges but subspace is not bi-orthonormal

5 Warning Only stochastic estimation of #eigenvalues returned fpm(14)=2

4 Warning Only the subspace has been returned using fpm(14)=1

3 Warning Size of the subspace MO is too small (MO<=M)

2 Warning No Convergence (#iteration loops>fpm(4))

1 Warning No Eigenvalue found in the search interval

0 Successful exit

-1 Error Internal error conversion single/double

-2 Error Internal error of the inner system solver in FEAST Driver interfaces

-3 Error Internal error of the reduced eigenvalue solver

Possible cause for Hermitian problem: matriz B may not be positive definite
—(100 +4) Error Problem with the i*" argument of the FEAST interface

Table 2: Return code descriptions for the parameter info.

Quick Tutorial using FEAST Drivers

1.

Tips

Identify your FEAST driver. Look at the corresponding section of this documentation to set up the
argument lists.

Specify a search contour enclosing the wanted eigenvalues (normal FEAST mode). Alternatively,
you can also use the Hermitian sparse drivers to search for the M0/2 lowest (fpm(40)=-1) or largest
(fpm(40)=1) eigenpairs (here MO must be set to two times the number of wanted eigenvalues).

In normal FEAST mode, specify the search subspace size MO as an overestimation of your estimated
#eigenvalues M within the contour (typically MO> 1.5M). If needed, user can take advantage of fast
stochastic estimates for M within a particular contour using fpm(14)=2.

Change the fpm default options if needed and run the code.

The FEAST convergence rate depends on the choice of the search subspace size MO, the number of
contour points, and the nature of the quadrature. To improve the convergence rate, you have the
possibility to:
— keep on increasing the number of quadrature nodes fpm(2) (£pm(8) for non-Hermitian/Polynomial).
— keep on increasing MO for the Gauss-Legendre or Trapezoidal quadrature.
— switch to Zolotarev quadrature for the Hermitian problem with fpm(16)=2 (Zolotarev is ideally
suited to deal with continuum spectra without the need to increase the subspace size MO~M).

Although FEAST could be used to seek 1000’s of eigenpairs within a single search contour, the size of
the search subspace MO is supposed to be much smaller than the size of the eigenvalue problem N. As
a result, the arithmetic complexity would mainly depend on the inner system solve (i.e. O(NMj) for
narrow banded or sparse system solvers). If you are looking for a very large number of eigenvalues, it
is recommended to consider multiple search intervals to be solved in parallel using PFEAST.

FEAST v4.0 is using an inverse residual iteration algorithm which enables the linear systems to be
solved with very low accuracy with no impact on the FEAST double precision convergence rate (!).

15

Consequently, all FEAST linear systems are solved in single precision by default (fpm(42)=1). Using
the RCI interfaces, users can then plug in their own low accuracy (single precision or less) direct or
iterative solver. Additionally, all the linear system factorizations can be kept in memory by (using
fpm(10)=1) which improves performance but use more memory.

Using the FEAST-SMP library, parallelism at the third level L3 (linear system solves) can only
be achieved using the threading capabilities of the linear system solver and via the shell variable
MKL_NUM_THREADS if Intel-MKL is used or the shell variable OMP_NUM_THREADS if SPIKE is used for the
banded interfaces.

Using the FEAST-MPT library, you can trivially parallelize the second level L2 (contour points) and
keep on using the same FEAST/IFEAST driver interfaces with shared memory solver at L3. Scalability
performances will be optimal when the number of MPI processes reaches the number of contour points
(either fpm(2) for FEAST Hermitian or £pm(8) for FEAST non-Hermitian and Polynomial).

The FEAST-MPI library also offers the possibility to use a MPI solver at level L3. This scheme is
called PFEAST and it is detailed in Section 3.6

16

3.2 FEAST Hermitian

11l Standard AX=EX - Real-Symmetric and Complex Hermitian
dfeast_sFev{x}({List-A},fpm,epsout,loop,Emin,Emax,MO,E,X,M,res,info,{Zne,Wne})
zfeast_hFev{x}({List-A},fpm,epsout,1oop,Emin,Emax,M0,E,X,M,res,info,{Zne,Wne})

1111 Generalized AX=EBX - Real-Symmetric and Complex Hermitian- (B is hpd)

dfeast_sFgv{x} ({List-A}, {List-B}, fpm,epsout,loop,Emin,Emax,M0,E,X,M,res, info,{Zne,Wne})
zfeast_hFgv{x} ({List-A}, {List-B}, fpm, epsout, loop,Emin,Emax,M0,E,X,M,res, info,{Zne,Wne})

1111 RCI (format independent) - Real-Symmetric and Complex Hermitian
dfeast_srci{x}(ijob,N,Ze,workl,work2,Aq,Bq,fpm,epsout,loop,Emin,Emax,M0,E,X,M,res,info,{Zne,Wnel})
zfeast_hrci{x}(ijob,N,Ze,workl,work2,Aq,Bq,fpm,epsout,loop,Emin,Emax,M0,E,X,M,res,info,{Zne,Wnel})

We note the following:

e The Table below details the series of arguments in each {List-A}, and {List-B} that are specific to
the type of matrix format represented above by F' (as a placeholder).

| [F] List-A [List-B |
Dense {y,e} { UPLO, N, A, LDA } {B, LDB }
Banded b { UPLO, N, ka, A, LDA } | { kb, B, LDB }
Sparse csr { UPLO, N, A, IA, JA } {B, IB, JB }

e Table [4] details the specific matrix-format arguments in {List-A} and {List-B}
e Table [3] details the common arguments in all the Hermitian FEAST interfaces above,
e Table [5| details the arguments for the Hermitian RCI interfaces (in red above).

l I Type ‘ I/0 I Description ‘
fpm integer(64) in/out | FEAST input parameters (see Table
epsout double real out Trace relative error |trace, — tracey_1|/ max(|Emin|, |Emax|)
loop integer out # of FEAST subspace iterations
Emin,Emax | double real in/out | Lower and Upper bounds of search interval
Remark: Output values if £pm(40)=+-1 for sparse drivers
MO integer in/out | Search subspace dimension

On entry: initial guess MO>M

On exit: new suitable MO if guess too large

Remark: MO=2+Wanted if £pm(40)=+-1 for sparse drivers

E double real(M0) in/out | Eigenvalues

On entry: initial guess if fpm(5)=1 (previous FEAST run)
On exit: Eigenvalues solutions E(1:M)

Remark: the E(M+1:M0) values are outside [Emin,Emax]

X double real(N,M0) using dfeast in/out | Eigenvectors (N: size of the system)

double complex(N,M0) using zfeast On entry: initial guess if fpm(5)=1 (previous FEAST run)
On exit: Eigenvectors solutions X(1:N,1:M)

Remark: if fpm(14)=1, first Q subspace on exit

M integer out #Eigenvalues found in [Emin,Emax]
#Estimated eigenvalues if fpm(14)=2
res double real(M0) out Relative residual ||Ax; — A\iBxil|2/||aBxi]|2
with o = max(|Emin|, |[Emax|)
info integer out Error handling (see Table for all INFO codes)
Zne,Wne double complex(£fpm(2)) in Custom integration nodes and weights- Expert mode

Table 3: List of common arguments for the FEAST Hermitian Driver interfaces.

17

l | Type [I/0 I Description
Common
UPLO | character(len=1) in Matrix Storage (°’F’,’L’,’°U’)
F’: Full; ’L’: Lower; "U’: Upper
N integer in | Size of the system
Dense
A double real(LDA,N) using dfeast | in | Eigenvalue system (Stiffness) matrix
double complex(LDA,N) using zfeast
LDA integer in Leading dimension of A LDA>=N
B double real(LDB,N) using dfeast in | Eigenvalue system (Mass) matrix
double complex(LDA,N) using zfeast
LDB integer in Leading dimension of B LDB>=N
Banded
ka integer in The number of sub or super-diagonals within the band of A.
A double real(LDA,N) using dfeast in | Eigenvalue system (Stiffness) matrix
double complex(LDA,N) using zfeast
LDA integer in Leading dimension of A LDA>=2%ka+1 if UPLO="F’
LDA>=ka+1 if UPLO="L’ or ’U’
kb integer in The number of sub or super-diagonals within the band of B.
B double real(LDB,N) using dfeast | in | Eigenvalue system (Mass) matrix
double complex(LDB,N) using zfeast
LDB integer in Leading dimension of B LDB>=2*kb+1 if UPLO="F’
LDB>=kb+1 if UPLO="L’ or ’U’
Sparse-csr
A double real(IA(N+1)-1) using dfeast | in | Eigenvalue system (Stiffness) matrix - CSR values
double complex(IA(N+1)-1) using zfeast
IA integer(N+1) in | Sparse CSR Row array of A.
JA integer(TA(N+1)-1) in | Sparse CSR Column array of A.
B double real(IB(N+1)-1) using dfeast | in | Eigenvalue system (Mass) matrix - CSR values
double complex(IB(N+1)-1) using zfeast
IB integer(N+1) in | Sparse CSR Row array of B.
JB integer(IB(N+1)-1) in | Sparse CSR Column array of B.

Table 4: List of arguments that are matrix-format specific for the FEAST Driver interfaces. Applicable to
Hermitian and Non-Hermitian Drivers.

Type [1/0 | Description
ijob integer in/out | On entry: ijob=-1 (initialization)
On exit: ID of the FEAST_RCI operation

N integer in Size of the system
Ze double complex out Coordinate along the complex contour
work1 double real(N,M0) using dfeast | in/out | Workspace

double complex(N,M0) using zfeast
work?2 double complex(N,MO) in/out | Workspace
Ag, Bq | double real(M0,MO) using dfeast | in/out | Workspace for the reduced eigenvalue problem

double complex(MO,M0) using zfeast

Table 5: List of arguments for the FEAST Hermitian RCI interfaces.

18

1
2
3

1

Hermitian Driver Interfaces: Examples

Let us consider the following systems:

Systeml a “real symmetric” generalized eigenvalue problem Ax = ABx , where A is real symmetric and B
is symmetric positive definite. A and B are of the size N = 1671 and have the same sparsity pattern
with number of non-zero elements NNZ = 11435.

System2 a “complex Hermitian” standard eigenvalue problem Ax = Ax, where A is complex Hermitian.
A is of size N = 600 with number of non-zero elements NNZ = 2988.

The $FEASTROO0T/example/FEAST directory provides Fortran and C implementation of these systems
using both dense, banded and sparse-CSR storage. Here, the complete list of routines:

System1 System2
dense
{F90,C}dense_dfeast_sygv {F90,C}dense_zfeast_heev
banded
{F90,C}dense_dfeast_sbgv {F90,C}dense_zfeast_hbev
sparse
{F90,C}dense_dfeast_scsrgv {F90,C}dense_zfeast_hcsrev

{F90,C}dense_dfeast_scsrgv_lowest”
(*using dfeast_scsrgv to compute few lowest eig.)

The $FEASTROOT/example/PFEAST-L2 directory provides the parallel implementation of all these routines
using FEAST-MPI. The routine names are preceded by the letter P. The MPI parallelization operates only
at the second level L2 where all the (fpm(2)) linear systems are distributed among the MPI processes.

Hermitian RCI Interfaces

Using the FEAST__RCI interfaces, the ijob parameter must first be initialized with the value —1. Once
the RCI interface is called, the value of the ijob output parameter, if different than 0, is used to identify
the FEAST operation that needs to be completed by the user. Users have then the possibility to customize
their own matrix direct or iterative factorization and linear solve techniques as well as their own matrix
multiplication routine.
Here is a general (F90) template example of RCI for solving real symmetric problem:

ijob=—1 ! initialization
do while (ijob/=0)
call dfeast_srci(ijob ,N,Ze,workl,work2,Aq,Bq,fpm,epsout ,loop ,Emin,Emax,M0,E,X,M, res ,info)

select case(ijob)

case(10) !!Factorize the complex matrix Az <=(ZeB—A) — or factorize a preconditioner of ZeB—A

''REMARK: Az can be formed and factorized using single precision arithmetic
................ <<< user entry
I'Solve the linear system with fpm(23) rhs; Az *x Qz=work2(1:N,1:fpm(23))
'Result (in place) in work2 <= Qz(1:N,1:fpm(23))
IREMARKS: —Solve can be performed in single precision
! —Low accuracy iterative solver are ok
................ <<< user entry
case (30) !!Perform multiplication A * X(1:N,i:j) result in workl (1:N,i:j)
1 where i=fpm(24) and j=fpm(24)+fpm(25)—1
................ <<< user entry
case (40) !!Perform multiplication B * X(1:N,i:j) result in workl (1:N,i:j)
M where i=fpm(24) and j=fpm(24)+fpm(25)—1
I'REMARK: user must set workl (1:N,i:j)=X(1:N,i:j) if B=I
................ <<< user entry
end select
end do

19

Here is a general (F90) template example of RCI for solving complex Hermitian problem:

1 ijob=—1 ! initialization

2> do while (ijob/=0)

3 call zfeast hrci(ijob ,N,Ze,workl,work2,Aq,Bq,fpm,epsout,loop ,Emin,Emax,M0,E,X,M, res ,info)
1+ select case(ijob)

5 case(10) !!Factorize the complex matrix Az <=(ZeB—A) — or factorize a preconditioner of ZeB-A
6 I''REMARK: Az can be formed and factorized using single precision arithmetic

T e <<< user entry

s case(1ll) !!Solve the linear system with fpm(23) rhs; Az % Qz=work2 (1:N,1:fpm(23))

9 I''Result (in place) in work2 <= Qz(1:N,1:fpm(23))

10 I''"REMARKS: —Solve can be performed in single precision
11 ! —Low accuracy iterative solver are ok

I << wuser entry

13 case(20) !![Optional: xonly ifx needed by case(21)]
14 ! Factorize the complex matrix Az H

!
!
15 I '/REMARKS: —The matrix Az from case(10) cannot be overwritten
!
!

16 ' —case (20) becomes obsolete if the solve in case(21) can be performed
17 I by reusing the factorization in case(10)

18 v ee i << user entry

19 case(21) !!Solve the linear system with fpm(23) rhs; Az H x Qz=work2(1:N,1:fpm(23))
20 I''Result (in place) in work2 <= Qz(1:N,1:fpm(23))

21 e e e e e e << user entry

22 case(30) !!Perform multiplication A % X(1:N,i:j) result in workl (1:N,i:j)

23 I where i=fpm(24) and j=fpm(24)+fpm(25)—1

24 e <<< user entry

25 case(40) !!Perform multiplication B % X(1:N,i:j) result in workl (1:N,i:j)

26 ! where i=fpm(24) and j=fpm(24)+fpm(25)—1

27 I''REMARK: user must set workl (1:N,i:j)=X(1:N,i:j) if B=I

28 e e e <<< user entry

20 end select

30 end do

20

3.3 FEAST Non-Hermitian

11 Standard AX=EX - Complex Symmetric, Real General and Complex General
zfeast_sFev{x}({List-A},fpm,epsout,loop,Emid,r,MO,E,X,M,res,info,{Zne,Wne})
dfeast_gFev{x}({List-A},fpm,epsout,1oop,Emid,r,MO,E,X,M,res,info,{Zne,Wne})

zfeast_gFev{x} ({List-A},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wnel})

111! Generalized AX=EBX - Complex Symmetric (B also sym.), Real General and Complex General
zfeast_sFgv{x}({List-A}, {List-B}, fpm,epsout,loop,Emid,r,M0,E,X,M,res, info,{Zne,Wne})
dfeast_gFgv{x} ({List-A},{List-B},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
zfeast_gFgv{x} ({List-A},{List-B},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})

1111 RCI (format independent) - Complex Symmetric and Real/Complex General
zfeast_srci{x}(ijob,N,Ze,workl,work2,Aq,Bq,fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wnel})
zfeast_grci{x}(ijob,N,Ze,workl,work2,Aq,Bq,fpm,epsout,loop,Emnid,r,M0,E,X,M,res,info,{Zne,Wnel})

We note the following:

e The Table below details the series of arguments in each {List-A}, and {List-B} that are specific to
the type of matrix format represented above by F' (as a placeholder).

| | F | List-A \ List-B |

Dense

Symmetric || y {UPLD, N, A, LDA} {B, LDB}
General e {N, A, LDA} {B, LDB}
Banded

Symmetric b {UPLO, N, ka, A, LDA} {kb, B, LDB}
General b {N, kla, kua, A, LDA} | {klb, kub, B, LDB}
Sparse

Symmetric csr {UPLO, N, A, IA, JA} {B, IB, JB}
General csr {N, A, IA, JA} {B, 1B, JB}

e Similarly to the Hermitian case, Table [4] details the specific matrix-format arguments in {List-A}
and {List-B}. For the banded drivers and the real/complex general cases, kla (resp. k1lb) represents
the number of sub-diagonals for matrix A (resp. matrix B), and kua (resp. kub) the number of super-
diagonals for matrix A (resp. matrix B).

e Table[7] details the common arguments in all the non-Hermitian FEAST interfaces above.

e Table |§| details the arguments for the non-Hermitian RCI interfaces (in red above).

l I Type ‘ 1/0 I Description
ijob integer in/out | On entry: ijob=-1 (initialization)
On exit: ID of the FEAST_RCI operation
N integer in Size of the system
Ze double complex out Coordinate along the complex contour
work1 double complex(N,MO0) in/out | Workspace

or

double complex (N, 2*MO0)

(if left vector calculated for non-sym.
interfaces and £fpm(15)=0)

work2 | double complex(N,MO0) in/out | Workspace

Aq, Bq | double complex(MO,MO) in/out | Workspace for the reduced eigenvalue problem

Table 6: List of arguments for the FEAST RCI interfaces. Applicable to Non-Hermitian and Polynomial
Drivers.

21

I Type ‘ I/0 I Description

fpm integer(64) in/out | FEAST input parameters (see Table

epsout double real out Trace relative error |trace, — tracey_1|/ max(|Emid| + r)
loop integer out # of FEAST subspace iterations

Emid double complex in Coordinate center of the contour ellipse

r double real in Horizontal radius of the contour ellipse

MO integer in/out | Search subspace dimension

On entry: initial guess MO>M
On exit: new suitable MO if guess too large

E double complex(MO) in/out | Eigenvalues

On entry: initial guess if £pm(5)=1 (previous FEAST run)
On exit: Eigenvalues solutions E(1:M)

Remark: the E(M+1:M0) values are outside the contour

X double complex(N,M0) in/out | Eigenvectors (N: size of the system)
or On entry: initial guess if fpm(5)=1 (previous FEAST run)
double complex (N, 2*M0) On exit: (right) Eigenvectors solutions X(1:N,1:M)
(if left vectors calculated for Remarks: -left vectors (if calculated) in X(1:N,MO+1:MO+M)
non-sym. drivers and fpm(15)=0) -if fpm(14)=1, first Q subspace on exit
M integer out #Eigenvalues found inside contour
#Estimated eigenvalues if fpm(14)=2
res double complex(MO) out Relative residual res(1:M) (right); res (M0+1,M0+M) (left)
or (right) ||Ax; — \iBxil|2/||aBxil|2
double complex(2+M0) (left) [|ATx; — A BHx]|2/||aBx;||2
(if left vectors calculated) with o = max(|Emid| +)
info integer out Error handling (see Table [2| for all INFO codes)
Zne,Wne | double complex(fpm(8)) in Custom integration nodes and weights- Expert mode

Table 7: List of common arguments for the FEAST Driver interfaces. Applicable to Non-Hermitian and
Polynomial Drivers.

non-Hermitian Driver Interfaces: Examples

Let us consider the following systems:

System3 a “real non-symmetric” generalized eigenvalue problem Ax = ABx , where A and B are real
non-symmetric. A and B are of the size N = 1671 and have the same sparsity pattern with number of
non-zero elements NNZ = 13011.

System4 a “complex symmetric” standard eigenvalue problem Ax = Ax, where A is complex symmetric.
A is of size N = 801 with number of non-zero elements NNZ = 24591.

The $FEASTROOT/example/FEAST directory provides Fortran and C implementation of these systems
using both dense, banded and sparse-CSR, storage. Here, the complete list of routines (System4 includes
examples for using expert routines as well):

System3 System4
dense
{F90,C}dense_dfeast_gegv {F90,C}dense_zfeast_syev{x}
banded
{F90,C}dense_dfeast_gbgv {F90,C}dense_zfeast_sbev{x}
sparse

{F90,C}dense_dfeast_gcsrgv {F90,C}dense_zfeast_scsrev{x}

The $FEASTROOT/example/PFEAST-L2 directory provides the parallel implementation of all these routines
using FEAST-MPI. The routine names are preceded by the letter P. The MPI parallelization operates only
at the second level L2 where all the (fpm(2)) linear systems are distributed among the MPI processes.

22

non-Hermitian RCI Interfaces

The RCI template for solving the complex symmetric problem is the same than the one used for solving the
real symmetric case in Section (just replace dfeast_srci{x} by zfeast_srci{x}).
Here is a general (F90) template example of RCI for solving real/complex general problem:

1 ijob=—=1 ! initialization

2> do while (ijob/=0)

3 call zfeast_ grci(ijob ,N,Ze,workl,work2,Aq,Bq,fpm,epsout ,loop ,Emid,r ,M0,E,X,M, res ,info)

1+ select case(ijob)

5 case(10) !!Factorize the complex matrix Az <=(ZeB—A) — or factorize a preconditioner of ZeB-A
'"REMARK: Az can be formed and factorized using single precision arithmetic

T e e << wuser entry

s case(1ll) !!Solve the linear system with fpm(23) rhs; Az x Qz=work2(1:N,1:fpm(23))
9 I''Result (in place) in work2 <= Qz(1:N,1:fpm(23))

10 ' '/REMARKS: —Solve can be performed in single precision

11 ! —Low accuracy iterative solver are ok

12 e e e <<< user entry

I''[Optional: xonly ifx needed by case(21)]

!l Factorize the complex matrix Az H

15 ' '/REMARKS: —The matrix Az from case(10) cannot be overwritten
I —case (20) becomes obsolete if the solve in case(21) can be performed
' by reusing the factorization in case(10)

18 v i e <<< user entry
10 case(21) !!Solve the linear system with fpm(23) rhs; Az H % Qz=work2(1:N,1:fpm(23))
20 ''"Result (in place) in work2 <= Qz(1:N,1:fpm(23))

. <<< wuser entry

22 case(30) !!Perform multiplication A % X(1:N,i:j) result in workl (1:N,i:j)
23 1 where i=fpm(24) and j=fpm(24)+fpm(25)—1

24 o e <<< wuser entry

25 case(31) !!Perform multiplication A™H % X(1:N,i:j) result in workl (1:N,i:j)

26 ! where i=fpm(34) and j=fpm(34)+fpm(35)—1

27 e <<< user entry

285 case(40) !!Perform multiplication B % X(1:N,i:j) result in workl (1:N,i:j)
29 ' where i=fpm(24) and j=fpm(24)+fpm(25)—1

30 I''REMARK: user must set workl (1:N,i:j)=X(1:N,i:j) if B=I

3 <<< user entry

32 case(41) !!Perform multiplication B'H % X(1:N,i:j) result in workl (1:N,i:j)
33 1 where i=fpm(34) and j=fpm(34)+fpm(35)—1

34 I''"REMARK: user must set workl (1:N,i:j)=X(1:N,i:j) if B=I

B5 e <<< user entry

36 end select

37 end do

38

23

3.4 FEAST Polynomial (quadratic, cubic, quartic, etc.)
p
Solving Z NAiz=0

rrnt {lAiiO} Real-Sym., Complex Herm., Complex Sym., Real General and Complex General
dfeast_stev{x}({List-A},fpm,epsout,loop,Emid,r,MO,E,X,M,res,info,{Zne,Wne})
zfeast_thev{x}({List-A},fpm,epsout,1oop,Emid,r,MO,E,X,M,res,info,{Zne,Wne})
zfeast_stev{x}({List—A},fpm,epsout,loop,Emid,r,MO,E,X,M,res,info,{Zne,Wne})
dfeast_gFpev{x}({List-A}, fpm,epsout,loop,Emid,r,M0,E,X,M,res, info,{Zne,Wnel})
zfeast_ngev{x}({List-A},fpm,epsout,loop,Emid,r,MO,E,X,M,res,info,{Zne,Wne})

1111 RCI (format independent) - Real/Complex Symmetric and Hermitian/Real/Complex General
zfeast_srcipev{x}(ijob,p,N,Ze,workl,work2,Aq,Bq,fpm,epsout,loop,Emid,r,M0,E,X,M,res, info,{Zne,Wne})
zfeast_grcipev{x}(ijob,p,N,Ze,workl,work2,Aq,Bq,fpm,epsout,loop,Emid,r,M0,E,X,M,res, info,{Zne,Wne})

We note the following:

e The Table below details the series of arguments in {List-A} that are specific to the type of matrix
format represented above by F' (as a placeholder). Remark: the banded format is not supported.

| [F | List-A |
Dense
Symmetric/Hermitian || {y,e} {UPLO, p, N, A, LDA}
General e {p, N, A, LDA}
Sparse
Symmetric/Hermitian csr {UPLO, p, N, A, IA, JA}
General csr {p, N, A, IA, JA}

e Table 8| details the specific matrix-format arguments in {List-A}.

e The common arguments in all the polynomial FEAST interfaces above are identical to the ones given
for the non-Hermitian case in Table [7

e The argument for the RCI interfaces (in red above) are also identical to the ones given for the non-
Hermitian case in Table[7] We note the addition of the argument integer p which stands for the degree
of the polynomial (e.g. p=2 fro quadratic, p=3 for cubic etc.)

l I Type ‘ 1/0 I Description ‘
Common
UPLO | character(len=1) in | Matrix Storage (°’F’,’L’,’U’)
F’: Full; "L’: Lower; *U’: Upper
N integer in | Size of the system
P integer in Degree of the polynomial
Dense
A double real(LDA,N,p+1) using dfeast | in | All system matrices A(:,1)
double complex(LDA,N,p+1) using zfeast
LDA integer in 1st Leading dimension of A LDA>=N
Sparse-csr - where nnz_max stands for the max of non-zero elements among all A sparse matrices
A double real(nnz_max,p+1) using dfeast in All system matrices A(:,i) - CSR values
double complex(nnz_max,p+1) using zfeast
IA integer(N+1,p+1) in | All sparse CSR Row array of A(:,1i).
JA integer(nnz_max,p+1) in | All sparse CSR Column array of A(:,1).

Table 8: List of arguments that are matrix-format specific for the FEAST Polynomial Driver interfaces.
Remark: A(:,i)==A;_; in Fortran.

24

16

17

19
20

21

Polynomial Driver Interfaces: Examples

Let us consider the following system:

Systemb a quadratic eigenvalue problem (AaA%2+ A3 A+ Ag)x = 0, where Az, Ay, Ag are real symmetric.
The size of the system is N = 1000 with 2998 non-zero elements for Ay and A;, and 1000 for As,.

The $FEASTROOT/example/FEAST directory provides Fortran and C implementation of this system using
both dense and sparse-CSR storage. Here, the complete list of routines:

Systemb

dense

{F90,C}dense_dfeast_sypev
sparse

{F90,C}dense_dfeast_scsrpev

The $FEASTRO0T/example/PFEAST-L2 directory provides the parallel implementation of these routines
using FEAST-MPI. The routine names are preceded by the letter P. The MPI parallelization operates only
at the second level L2 where all the (fpm(2)) linear systems are distributed among the MPI processes.

Polynomial RCI Interfaces

Here is a general (F90) template example of RCI for solving real/complex symmetric problem:

I'll' Here your polynomial matrices are in stored A[i] (i=1,..,p+1) (p polynomial degree)
' All the matrices are real or complex symmetric
ijob=—1 ! initialization

do while (ijob/=0)
call zfeast_srcipev (ijob ,p,N,Ze,workl,work2,Aq,Bq,fpm,epsout ,loop ,Emid,r ,M0,E,X,M, res ,info)
select case(ijob)
case (10) !!Form and Factorize P(Ze)
I''Example for the quadratic problem: P(Ze)=A[3]x*Zex*24+A[2]* Zet+A[1]
I''"REMARK: P(Ze) can be formed and factorized using single precision arithmetic
................ << user entry
I'Solve the linear system with fpm(23) rhs; P(Ze)* Qz=work2(1:N,1:fpm(23))
'Result (in place) in work2 <= Qz(1:N,1:fpm(23))
IREMARKS: —Solve can be performed in single precision
! —Low accuracy iterative solver are ok
................ <<< user entry
case (30) !!Perform multiplication A[fpm(57)] * X(1:N,i:j) result in workl (1:N,i:j)
' where i=fpm(24) and j=fpm(24)+fpm(25)—1; fpm(57) take the values 1...p+1
................ <<< user entry
end select
end do

Here is a general (F90) template example of RCI for solving Hermitian or real/complex general problem:

I'll' Here your polynomial matrices are in stored A[i] (i=1,..,p+1) (p polynomial degree)
Il At least one matrix is not real/complex symmetric
ijob=—1 ! initialization
do while (ijob/=0)
call zfeast__grcipev (ijob ,p,N,Ze,workl,work2,Aq,Bq,fpm,epsout ,loop ,Emid,r ,M0,E,X,M, res ,info)
select case(ijob)
case(10) !!Form and Factorize P(Ze)

!'Example for the quadratic problem: P(Ze)=A[3]x*Zex*x2+A[2]x Ze+A[1]

I''"REMARK: P(Ze) can be formed and factorized using single precision arithmetic
................ <<< user entry
I'1Solve the linear system with fpm(23) rhs; P(Ze)*x Qz=work2(1:N,1:fpm(23))
''"Result (in place) in work2 <= Qz(1:N,1:fpm(23))
I''REMARKS: —Solve can be performed in single precision
1 —Low accuracy iterative solver are ok
................ <<< user entry

25

16 case(20) !![Optional: xonly ifx needed by case(21)]
17 Il Factorize the complex matrix P(Ze) H

!
!
18 I '/REMARKS: —The factorization P(Ze) from case(10) cannot be overwritten
!
!

19 I —case (20) becomes obsolete if the solve in case(21) can be performed

20 1! by reusing the factorization in case(10)

21 e << user entry

22 case(21) !!Solve the linear system with fpm(23) rhs; P(Ze) H * Qz=work2(1:N,1:fpm(23))

23 I''Result (in place) in work2 <= Qz(1:N,1:fpm(23))

24 e <<< user entry

25 case(30) !!Perform multiplication A[fpm (57)] % X(1:N,i:j) result in workl (1:N,i:j)

26 I where i=fpm(24) and j=fpm(24)+fpm(25)—1; fpm(57) will the values 1...p+1
27 e e <<< user entry

28 case(31) !!Perform multiplication ATH[fpm (57)] % X(1:N,i:j) result in workl (1:N,i:j)

29 I where i=fpm(34) and j=fpm(34)+fpm(35)—1; fpm(57) will the values 1...p+1
B30 e <<< user entry

31 end select
32 end do
33

26

2

3.5 IFEAST (FEAST w/o Factorization)

IFEAST stands for using FEAST using inexact iterative solver for solving the linear systems (instead of using
a direct solver). IFEAST only supports the sparse driver interfaces where the MKL-PARDISO solver is then
replaced by a built-in BiCGstab solver. IFEAST is particularly effective if the sparse system matrix is very
large (typically >1M) and/or the direct factorization becomes too expensive (both in time and memory).
Two options are possible for calling IFEAST:

Optionl In the naming convention of all FEAST sparse drivers, replace feast by ifeast.
Option2 Keep the name of your FEAST sparse driver unchanged but use the new flag value fpm(43)=1.

As an example, let us re-work the helloworld example presented in Section [2.4] Here are the few lines
that need to be changed in the code in order to make use of IFEAST:

'l the matrix A needs first to be defined in sparse CSR format;

'l add these lines in the variable declaration section of the program

integer , parameter :: NNZ

double precision ,dimension(NNZ) :: sA=(/2.0d0,-1.0d0,—1.0d0,—1.0d0,3.0d0,—1.0d0,—1.0d0,&
&—-1.0d0,—-1.0d0,3.0d0,—-1.0d0,—-1.0d0,—-1.0d0,2.0d0/)

integer ,dimension (N+1) IA=(/1,4,8,12,15/)

integer ,dimension (NNZ) :: JA=(/1,2,3,1,2,3,4,1,2,3,4,2,3,4/)

111 The direct call to IFEAST can be done as follow (option 1)
call feastinit (fpm)
fpm(1)=1 !! change from default value (print info on screen)

call difeast__scsrev (UPLO,N,sA IA JA, fpm,epsout ,loop ,Emin,Emax,M0,E,X M, res,info)

P11 Alternatively , an indirect call to IFEAST is also possible (option 2)

call feastinit (fpm)

fpm(1)=1 !! change from default value (print info on screen)

fpm(43)=1 !! switch solver in FEAST sparse driver from MKI-PARDISO to BicGStab
call dfeast_scsrev (UPLO,N,sA,IA,JA, fpm,epsout ,loop ,Emin,Emax,M0,E,X,M, res ,info)

Here is the output of the run:

ko ok ok okkok ok ok skok ok ok ook ok ok sk ok ok ok ok ok ok ok ok ok

sxckkkokdokkkk FEAST v4.0 BEGIN skskokkokokskokskokkokokskkkok

ook ok ok skok ok ok ok skok ok ok ook Kok ok sk ok ok ko ok ok ok ok ok

Routine DIFEAST_SCSREV

Solving AX=eX with A real symmetric

List of input parameters fpm(1:64)-- if different from default

fpm(1)= 1
| FEAST data |
Emin 3.0000000000000000E+00 |
Emax 5.0000000000000000E+00 |

#Contour nodes 4 (half-contour) |

Quadrature rule Trapezoidal
Ellipse ratio y/x 1.00
System solver BiCGstab

|

|

|

|

Single precision |
Matrix scaled |
|

|

|

|

|

FEAST uses MKL? Yes
Fact. stored? Yes
Initial Guess Random

4
3

Size system
Size subspace

|
|
|
|
|
|
| eps=1E-1; maxit= 40
|
|
|
|
|
|
|

FEAST runs

27

#It | #Eig | Trace | Error-Trace | Max-Residual

#it 4; res min= 1.0501874385226984E-05; res max= 3.1005099299363792E-04
#it 3; res min= 1.8933478742837906E-02; res max= 9.8125219345092773E-02
#it 2; res min= 2.9427373781800270E-02; res max= 8.7035216391086578E-02
#it 2; res min= 1.8594998866319656E-02; res max= 4.0714181959629059E-02
0 2 7.9995148090616173E+00 1.0000000000000000E+00 8.7043125405406700E-03

#it 2; res min= 2.8199069201946259E-02; res max= 5.2359659224748611E-02
#it 2; res min= 6.4112566411495209E-02; res max= 8.7011836469173431E-02
#it 2; res min= 3.0766267329454422E-02; res max= 5.8814667165279388E-02
#it 2; res min= 1.4842565171420574E-02; res max= 1.5974638983607292E-02
1 2 7.9999999809553799E+00 9.7034378752525186E-05 5.5062636929826442E-05
#it 1; res min= 5.3539618849754333E-02; res max= 5.3563684225082397E-02
#it 1; res min= 8.7251774966716766E-02; res max= 8.7261073291301727E-02
#it 1; res min= 7.2112381458282471E-02; res max= 7.2119705379009247E-02
#it 1; res min= 6.5362729132175446E-02; res max= 6.5378636121749878E-02
2 2 7.9999999999999591E+00 3.8089158493903597E-09 7.6857681986636782E-08
#it 1; res min= 3.4910961985588074E-02; res max= 3.4911289811134338E-02
#it 1; res min= 8.4501713514328003E-02; res max= 8.4501914680004120E-02
#it 1; res min= 6.9185368716716766E-02; res max= 6.9185607135295868E-02
#it 1; res min= 6.2304046005010605E-02; res max= 6.2304504215717316E-02
3 2 8.0000000000000036E+00 8.8817841970012523E-15 2.5198258072819870E-12
#it 1; res min= 3.4680232405662537E-02; res max= 3.4876041114330292E-02
#it 1; res min= 8.4406383335590363E-02; res max= 8.4497839212417603E-02
#it 1; res min= 6.9181196391582489E-02; res max= 6.9283291697502136E-02
#it 1; res min= 6.2299706041812897E-02; res max= 6.2503643333911896E-02
4 2 8.0000000000000000E+00 7.1054273576010023E-16 3.0767402982137245E-16

==>FEAST has successfully converged with Residual tolerance <1E-12

FEAST outside it. 4
Inner BiCGstab it. Sill
Eigenvalue found 2 from 3.9999999999999991E+00 to 4.0000000000000009E+00

FEAST-RCI timing |

Fact. cases(10,20)	0.0000
Solve cases(11,12)	0.0189
Axx cases(30,31)	0.0000
B*x cases(40,41)	0.0001
Misc. time	0.0005
Total time (s)	0.0195

sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok sk sk sk sk sk sk sk ok ok ok ok ok ok ok sk ks sk sk ok sk ok sk ok ok kK
*okkokkkokkkkk FEAST— ENDkskokokskoskok ok ook o ok sk sk ok ok ok ok ok ok ok ok
sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk s sk sk ok sk ok sk sk sk sk sk ok ok ok ok ok ok ok sk ok sk sk sk ok sk ok sk ok ok kK

Solutions (Eigenvalues/Eigenvectors/Residuals)

E= 4.00000000000000 X= 0.353553390593291 -0.853553390593266
0.146446609406686 0.353553390593291 Res= 3.076740298213724E-016
E= 4.00000000000000 X= 0.353553390593257 0.146446609406767
-0.853553390593281 0.3535563390593257 Res= 2.361858070262224E-016

Some Remarks:

e [FEAST is using different default fpm parameters than FEAST. In particular, the trapezoidal rule is
used along a half-circle with 4 contour integration points, as well as the BiCGStab iterative solver.

e Fach FEAST loop reports the total number of BiCGstab iterations for each linear system solve needed
to reach the accuracy defined in £fpm(45). The total number of BiCGtab iterations will be reported in
fpm(60) (here 31, of course IFEAST is rather ineffective for such small system).

e You may have noticed that the values of the output eigenvectors for this example are different than
the ones reported in Section As a reminder, eigenvectors are not unique, both solutions are here
orthonormal and correct (they span the same eigenvector subspace).

28

3.6 PFEAST and PIFEAST (MPI-solver)

In FEAST v4.0, the FEAST-MPI library enables the use of MPI linear system solvers at L3. As a result,
the three level of parallelisms of FEAST (L1-L2-L3) can all support MPI (FEAST is internally using three
MPI communicators). This MPI-MPI-MPI programming model is named PFEAST. PFEAST currently
supports all the sparse drivers (for Hermitian/non-Hermitian/Polynomial problems) as well as all the RCI
interfaces. Using RCI, an expert developer could straightforwardly customize PFEAST using highly-efficient
application-specific MPT solvers such as: domain decompositions, or iterative/hybrid solvers with/without
preconditioners.
Here some information about the use of PFEAST:

Initialization The feastinit(fpm) routine must be replaced by | pfeastinit(fpm, L1_comm_world, nL3) ‘

which, in addition of setting up default fpm values, is going to initialize all MPI communicators.

e L1_comm_world represents your own defined MPI communicator for a given search contour (con-
taining nL1 total MPI processes), if only a single contour is used it must take the value MPI_COMM_WORLD.

e nL3 is an (in/out) integer input that indicates the number of MPI processes you wish to use at
level L3 (MPI system solver). The value of nL3 will be reassigned to nL1 if nL1 is not a multiple
of nL3. In addition, if nL1< nL3 then nL3= nL1 on exit. Ideally, nL1/nL3 should be a multiple of
a number of contour points (if it is equal to the number of contour points, then L2 is optimally
used). Furthermore, L3 can also be threaded (MPI calling OpenMP on each local distributed
system), make sure that your number of selected threads <omp> times nL1 does not exceed the
number of available physical cores of your cluster.

e This initialization routine is setting up the L3 communicator £pm(49) (n particular) that may be
needed to distribute your matrix.

Sparse Drivers In the naming convention of the FEAST sparse drivers, all routine names must be pre-
ceded by the letter p. In particular, you must replace z{i}feast by pz{i}feast, or d{i}feast
by pd{i}feast. We actually use the names PFEAST and PIFEAST to indicate the MPI version
of the FEAST and IFEAST interfaces, respectively. PFEAST is using MKL-Cluster-PARDISO and
PIFEAST is using a built-in MPI-BiCGstab iterative solver (PBiCGStab). PIFEAST is also using its
own built-in highly efficient MPI sparse mat-vec library.

PFEAST/PIFEAST drivers allow two options for the row distribution of matrices and solution vectors:

e global and common to all L3-MPI processes (The row-distribution will then take place internally).
The argument list for all interfaces stay unchanged.

e locally row distributed among all L3-MPI processes. The user is responsible for distributing
the data using the fpm(49) L3 communicator. The argument list for all interfaces stay mostly
unchanged but the size of matrix/vectors N which must now be local.

Furthermore, PFEAST /PIFEAST will automatically detect which option above you are using!

RCI Interfaces The names of the RCI interfaces do not change (the letter p is not needed). In the argument
list, only the size N must be changed to its local value (i.e. local number of rows for the row-distributed
vector and work arrays).

PFEAST with global L3 distribution: Examples

The $FEASTROOT/example/PFEAST-L2L3 directory provides Fortran and C implementation of Systeml to
System5 examples (discussed previously). Here is the complete list of the PFEAST routines that are all
using global sparse CSR-storage.

Type Routine

Systeml Real Sym. Generalized P{F90,C}sparse_pdfeast_scsrgv
System2 Complex Herm. Standard P{F90,C}sparse_pzfeast_hcsrev
System3 Real non-Sym. Generalized P{F90,C}sparse_pdfeast_gcsrgv
System4 Complex Sym. Standard P{F90,C}sparse_pzfeast_scsrev
Systemb Real Sym. Quadratic P{F90,C}sparse_pdfeast_scsrpev

29

PFEAST with local L3 distribution: Example

As an example, let us re-work the helloworld example presented in Section [2.4] using 2 MPI processes to
distributed the 4 x 4 matrix. We obtain (for example):

(2 -1 -1 0\

-1 3 -1 1| (A4

A= -1 -1 3 -—-1] " \A,
0 -1 -1 2

A Fortran90 source code example is provided below:

program helloworld_pfeast__local

1

2 implicit none

3 include ’mpif.h’

4 'l 4x4 global eigenvalue system =— two 2x4 local matrices
5 integer ,parameter :: Nloc=2, NNZloc=7

6 character (len=1) :: UPLO="F’

7 double precision ,dimension (NNZloc) :: Aloc

8 integer ,dimension (Nloc+1) :: IAloc

9 integer ,dimension (NNZloc) :: JAloc

10 'l input parameters for FEAST
11 integer ,dimension (64) :: fpm

12 integer :: M0O=3 ! search subspace dimension
13 double precision :: Emin=3.0d0, Emax=5.0d0 ! search interval
14 I'l output variables for FEAST

15 double precision ,dimension (:),allocatable :: E, res

16 double precision ,dimension (:,:),allocatable :: X

17 double precision :: epsout

18 integer :: nL3,rank3,loop,info ,M,i

19 11 MPI
20 integer :: code
21 call MPI_INIT(code)
23 11l Allocate memory for eigenvalues.eigenvectors ,residual
24 allocate (E(MO) ,X(Nloc ,MO0), res (M0))
26 PIIIIIITID INITIALIZE PFEAST and DISTRIBUTE MATRIX
27 nL3=2
28 call pfeastinit (fpm ,MPL COMM WORLD, nL3)
29
30 call MPL COMM RANK(fpm (49),rank3,code) !! find rank of new L3 communicator
31 if (rank3==0) then
32 Aloc=(/2.0d0,-1.0d0,—1.0d0,—1.0d0,3.0d0,—1.0d0,—1.0d0/)
33 TAloc=(/1,4,8/)
34 JAloc=(/1,2,3,1,2,3,4/)
35 elseif (rank3==1) then
36 Aloc=(/—1.0d0,—1.0d0,3.0d0,—1.0d0,—1.0d0,—1.0d0,2.0d0/)
37 IAloc=(/1,5,8/)
38 JAloc=(/1,2,3,4,2,3,4/)
39 endif

10

g DIIEEEEEED PFEAST

12 fpm(1)=1 !! change from default value (print info on screen)

43 call pdfeast__scsrev (UPLO, Nloc , Aloc,IAloc,JAloc,fpm,epsout ,loop ,Emin,Emax,M0,E, X ,M, res ,info)

5 DI REPORT

16 if (info==0) then

17 print #,’Solutions (Eigenvalues/Eigenvectors/Residuals) at rank L3’ ,rank3
18 do i=1M

19 print *, Eigenvalue’ i
0 print *,’E=" E(i),’X=",X(:,1i), "Res=",res (i)
1 enddo

52 endif

54 end program helloworld_pfeast_local

30

Your program must be compiled using the same MPI implementation used to compile the FEAST-MPI
library. Once compiled, your source program must now be linked with the pfeast library. You can use (for
example):

mpiifort -o helloworld_pfeast_local helloworld_pfeast_local.f90

e | -L$FEASTROOT>/1lib/<arch> -lpfeast -mkl=parallel -1mkl_blacs_intelmpi_lp64 -liomp5
-lpthread -1m -1dl

if FEAST was compiled with ifort, MKL flag was set to 'yes’, and MPI was chosen to be impi’ (intel
mpi).

mpif90.mpich -fc=gfortran -o helloworld_pfeast_local helloworld_pfeast_local.f90
e |-L$FEASTROOT>/1ib/<arch> -lpfeast -Wl,-no-as-needed -1lmkl_gf_1p64 -1lmkl_gnu_thread
-1mkl_core -1lmkl_blacs_intelmpi_1lp64 -lgomp -lpthread -1m -1dl

if FEAST was compiled with gfortran, MKL flag was set to 'yes’, and MPI was chosen to be 'mpich’.

A run of the resulting executable looks like:

mpirun -n 2 ./helloworld_pfeast_local

and the output of the run should be:

stk sk ok ok ok sk ok ok ok o sk sk sk ok sk ok sk sk o ok ok ok sk sk sk ok sk sk sk o sk ok ok sk ok ok ok ok

sxkkkkkkkkk FEAST v4.0 BEGIN skskskkokkokskokokkokkokkkok

stk sk ok ok ok sk ok ok ok ok sk sk sk ok sk sk sk ok ok ok ok sk sk s ok sk ok sk sk ok ok ok ok sk sk ok ok ok

Routine PDFEAST_SCSREV

Solving AX=eX with A real symmetric

#MPI (total=L2%L3) 2= 1x 2

List of input parameters fpm(1:64)-- if different from default

fpm(1)= 1

| FEAST data |
Emin 3.0000000000000000E+00 |
Emax 5.0000000000000000E+00 |

|

|

| 8 (half-contour) |
| Gauss

| 0.30

| MKL-Cluster-Pardiso |
| Single precision |
| Matrix scaled |
| |
| |
| |
| |
| |

#Contour nodes
Quadrature rule
Ellipse ratio y/x
System solver

FEAST uses MKL? Yes
Fact. stored? Yes
Initial Guess Random
Size system 4
Size subspace 3
| FEAST runs |
#It | #Eig | Trace | Error-Trace | Max-Residual
0 2 7.9999999999999947E+00 1.0000000000000000E+00 1.2829791863202860E-08
1 2 8.0000000000000000E+00 1.0658141036401502E-15 6.6022321739723205E-16

==>FEAST has successfully converged with Residual tolerance <1E-12
FEAST outside it.
Eigenvalue found 2 from 3.9999999999999996E+00 to 4.0000000000000000E+00

FEAST-RCI timing |

Fact. cases(10,20)	0.0058
Solve cases(11,12)	0.0025
Axx cases(30,31)	0.0000

31

Bxx cases (40,41)	0.0000
Misc. time	0.0005
Total time (s)	0.0088

ok ok ok sk sk sk sk ok ok ok ok ok sk sk sk ok ok o ok sk sk sk sk sk o ok ok sk sk sk sk sk sk ok ok sk sk sk sk sk o ok ok
sokokokokokokokokokok FEAST— ENDsskokskok sk kskskook ok ok o ke ksk sk sk ok ok o ok k
sk ok ok sk sk sk sk ok ok ok ok ok sk sk sk ok sk o ok sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok sk sk sk sk sk o ok ok

Solutions (Eigenvalues/Eigenvectors/Residuals) at rank L3 0

Eigenvalue 1

E= 4.00000000000000 X= 0.358971274554087 -0.851189974005894 Res= 2.784560286672102E-016
Eigenvalue 2

E= 4.00000000000000 X= -0.348051180209196 -0.159610864767551 Res= 6.602232173972321E-016
Solutions (Eigenvalues/Eigenvectors/Residuals) at rank L3 1

Eigenvalue

E= 4.00000000000000 X= 0.133247424897719 0.358971274554087 Res= 2.784560286672102E-016
Eigenvalue 2

E= 4.00000000000000 X= 0.855713225185942 -0.348051180209196 Res= 6.602232173972321E-016

PFEAST using 3 levels of parallelism: Example

Three levels of parallelism means that L1 is active and multiple search contours can be used simultaneously.
FEAST v4.0 does not offer automatic partitioning of the overall eigenvalue spectrum, it is then up to the
users to guess it. Users could take advantage of fast stochastic estimates with the flag fpm(14)=2. Once the
eigenvalue spectrum partitioned, a single call to PFEAST will account for all L.1-1.2-1.3 MPI parallelism.

The $FEASTRO0T/example/PFEAST-L1L2L3 directory provides Fortran and C implementation of the Sys-
tem2 example (discussed previously). It uses two search intervals. The name of the routines are:

System2

sparse 3P{F90,C}dense_pzfeast_hcsrev

Remark: Since multiple search intervals are involved, the option fpm(1)=1 (printing FEAST info on screen),
may provide a bit confusing results to read. You can easily change this flag value using fpm(1)=-i with i
is associated with the rank i-1 of the L1 MPI Communicator. Each search contour will then print all its
FEAST results into separate files named feast{i}.log.

32

4 Complement

4.1 Matrix storage
Let us consider the following matrix A (as an example):

a11 Qai2 0 0

az1 a2 G 0
A= ° (2)
0 a3z a3z as
0 0 as3 au

If the matrix presents some particular properties such as Hermitian (a;; = aj; for i # j) or symmetric
(ai; = aji), only half of the matrix elements need to be defined. Using the FEAST Driver interfaces, this
matrix could be stored in dense, banded or sparse-CSR format as follows:

Dense The matrix is stored in a two dimensional array in a straightforward fashion. Using the options
UPLO="L’ or UPLO="U’, the lower triangular or upper triangular part respectively, do not need to be
referenced.

Banded The matrix is also stored in a two dimensional array following the banded LAPACK-type storage:

* a12 A23 (34
A=|an a2 a3z awu
a21 az2 (43 *

In contrast to LAPACK, no extra-storage space is necessary since LDA>=k1+ku+1 if UPLO="F’ (LAPACK
banded storage would require LDA>=2xk1+ku+1). For this example, the number of subdiagonals k1 and
superdiagonals is ku are both equal to 1. Using the option UPLO="L’ or UPL0O="U", the rows respectively
above or below the diagonal elements row, do not need to be referenced (or stored).

Sparse-CSR The non-zero elements of the matrix are stored using a set of one dimensional arrays (A,IA, JA)
following the definition of the CSR (Compressed Sparse Row) format

A= (a11, 12,021, 422, 423, A32, 433, @34, 443, a44)
IA = (1,376,9,11)
JA = (1,2,1,2,3,2,3,4,3,4)

Using the option UPLO="L"’ or UPL0O="U’, one would get respectively

A = (a11,a21,a22,a32, 033, a43, G44) A = (a11,012, 022, a23,a33, 434, G44)
IA = (1,2,4,6,8) and IA= (1,3,5,7,8)
JA = (1,1,2,2,3,3,4) JA = (1,2,2,3,3.4,4)

4.2 Search contour

Figure 2] summarizes the different search contour options possible for both the Hermitian and non-Hermitian
(including Polynomial) FEAST algorithms.

For the Hermitian case, the user must then specify a 1-dimensional real-valued search interval [Epin, Emaz]-
These two points are used to define a circular or ellipsoid contour C centered on the real axis, and along
which the complex integration nodes are generated. The choice of a particular quadrature rule will lead to
a different set of relative positions for the nodes and associated quadrature weights. Since the eigenvalues
are real, it is convenient to select a symmetric contour with the real axis (C = C*) since it only requires to
operate the quadrature on the half-contour (e.g. upper half).

With a non-Hermitian /Polynomial problem, it is necessary to specify a 2-dimensional search interval that
surrounds the wanted complex eigenvalues. Circular or ellipsoid contours can also be used and they can be
generated using standard options included into FEAST v4.0. These are defined by a complex midpoint E,,;4

33

and a radius r for a circle (for an ellipse the ratio between the horizontal axis 2r and vertical axis can also
be specified, as well as an angle of rotation). A “Custom Contour” feature is also supported that can use
arbitrary quadrature nodes and weights (provided by the users).

Hermitian
Flat Ellipse Custom
T T "1 L I L L
— 1 - —]
R
0 5
\
oL o 9 l
~-o0--- | &--——0----%
IR IR IR N (Y R R BRI B
1 2 3 4 1 2 3 4

Non-Hermitian

Tall Ellipse - 70° angle
T T T g 1T T T 7T

REAL

Figure 2: Various search contour examples for the Hermitian and the non-Hermitian/Polynomial FEAST
algorithms. Both algorithms feature standard ellipsoid contour options and the possibility to define custom
arbitrary shapes. In the Hermitian case, the contour is symmetric with the real axis and only the nodes in
the upper-half may be generated. In the non-Hermitian/Polynomial case, a full contour is needed to enclose
the wanted complex eigenvalues. Some data used to generate these plots:

Hermitian case: fpm(2)=5 for all, [Emin, Emaz] = [1,4], 7 = 1.5 for all; £pm(18)=50 for the flat ellipse;
and expert routine for the custom contour

Non-Hermitian/Polynomial case: fpm(8)=10 for all; E,;q = 3.5+ 4 and r = 1.5 for circle; Epiq =
3.4+ 1.3i, r = 0.75, £pm(18)=200, £fpm(19)=70 for tall rotated ellipse; and expert routine for the custom
contour

The FEAST package provides a couple of utility routines that can return the integration nodes and
weight used by the FEAST interfaces:

zfeast_contour (Emin,Emax,fpm2,fpm16,fpm18,Zne,Wne)
Returns FEAST integration nodes and weights for a half-contour contour defined by Emin and Emax.
To be used with Hermitian FEAST interfaces.

zfeast_gcontour (Emid,r, fpm8,fpml6,fpml18,fpml9,Zne, Wne)
- Returns FEAST integration nodes and weights for a full contour defined by Emid and r. To be used
with non-Hermitian and polynomial FEAST interfaces.

34

The description of the arguments list for these routines is given in Table [and Table

| | Type | I/O [Description
Emin, Emax | double real in Lower and Upper bounds of search interval
fpm2 integer in Value of £pm(2)- #contour point (half-contour)
fpm16 integer in Value of fpm(16)- Integration type
fpm18 integer in Value of fpm(18)- Ellipse definition
Zne double complex | out | Integration nodes
Wne double complex | out | Integration weights
Table 9: List of arguments for zfeast_contour.
‘ Type ‘ 1/0 ‘ Description
Emid double complex in Coordinate center of the contour ellipse
T double real in Horizontal radius of the contour ellipse
fpm8 integer in Value of £fpm(8)- #contour point (full-contour)
fpm16 | integer in | Value of fpm(16)- Integration type
fpm18 | integer in | Value of £fpm(18)- Ellipse definition
fpm19 | integer in Value of fpm(19)- Ellipse rotation angle
Zne double complex | out | Integration nodes
Wne double complex | out | Integration weights

Table 10: List of arguments for zfeast_gcontour.

4.3 Contour Customization

The Custom Contour feature grants the flexibility to target specific eigenvalues in a complex plane. This
feature must be used with “Expert” routines that take two additional arguments containing the complex
integration nodes and weights. Custom contours can be employed by following three simple steps:

1. Define a contour (half-contour that encloses [Amin, Amaz] for the Hermitian problem, or full contour
for the non-Hermitian/Polynomial problem),
Calculate corresponding integration nodes and weights, and

. Call “Expert” FEAST routine (either Driver or RCI interfaces by adding a x at the end of the routine
name).

Furthermore, the FEAST package provides a utility routine zfeast_customcontour that can assist the
user to extract nodes and weights from a custom design arbitrary geometry in the complex plane (full-
contour). Users must only define the geometry of their contour. The contour can be comprised of line
segments and half ellipses. Two important points to note: (i) the actual contour will end up being a polygon
defined by the integration points along the path, and (ii) only convex contours may be used. A geometry
that contains P contour parts/pieces is defined using three arrays Zedge, Tedge, and Nedge. The interface
is defined below and the description of the arguments list is given in Table

zfeast_customcontour (Nc,P,Nedge,Tedge,Zedge, Zne,Wne)

As an example, the following code will generate the corresponding complex contour.

35

Type ‘ I/0 ‘ Description
Nc integer in The total number of integration nodes, should be equal to
SUM(Nedge (1:P))
P integer in Number of contour parts/pieces that make up the contour
Zedge | integer(P) in | Complex endpoints of each contour piece
Remark: * endpoints positioned in clockwise direction
* the k' piece is [Zedge (k) ,Zedge (k + 1)]
* last piece is [Zedge (P) ,Zedge (1)]
Tedge | integer(P) in The type of each contour piece:
*If Tedge (k)=0, k" piece is a line
If Tedge (k) >0, k"* piece is a (convex) half-ellipse
with Tedge (k) /100 = ratio a/b and a primary radius from the endpoints
Remark: 100 is a half-circle
Nedge | integer(P) in | #integration intervals to consider for each piece
define the accuracy of the trapezoidal rule by piece for FEAST
Zne double complex | out | Custom integration nodes for FEAST
Wne double complex | out | Custom integration weights for FEAST
Table 11: List of arguments for zfeast_customcontour.
1 P =3 ! number of pieces that make up the contour 13

2

® N o

allocate (Zedge(1:P),Nedge(1:P),Tedge(1:P)) be 2 .
Zedge = (/(0.0d0,0.0d0),(0.0d0,1.0d0),(6.0d0,1.0d0)/)

Tedge (:) = (/0,0,50/)!

(line)——(line)——(half—circle) o5t 1 .

5 Nedge(:) = (/8,8,8/) ! integration intervals by piece % oL |
Nc = sum(Nedge (1:P)) ! #contour points (here 24) E: a Rs
allocate (Zne(1:Nc), Wne(1:Nc)) T oost i
call zfeast_ customcontour (Nc,P,Nedge, Tedge, Zedge ,Zne ,Wne
! (Zne, Wne) are now defined and ready to use for FEAST i 3 |

-1 0 1 2 3 4 5 6 7
REAL

The $FEASTROOT/example/FEAST directory provides Fortran and C implementation of the expert FEAST
routines using a custom contour. It is applied on the System4 example using both dense, banded and sparse-
CSR storage. Here, the complete list of routines:

System4
dense
{F90,C}dense_zfeast_syevx
banded
{F90,C}dense_zfeast_sbevx
sparse

{F90,C}dense_zfeast_scsrevx

36

4.4 FEAST utility sparse drivers

If a sparse matrix can be provided by the user in coordinate/matrix market format, the $FEASTROOT/utility
directory offers a quick way to test all the FEAST parameter options and the efficiency /reliability /timing of
the FEAST SPARSE driver interfaces. Two general drivers are provided for FEAST /IFEAST and PFEAST-
/PIFEAST, named driver_feast_sparse or driver_pfeast_sparse in their respective subdirectories. The
command “>make all” should compile the drivers.

If we denote mytest a generic name for the user’s eigenvalue system test Ax = Ax or Ax = ABx. You
will need to create the following three files:

e mytest.mtx should contain the matrix A in coordinate format; As a reminder, the coordinate format
is defined row by row as

iNNZ

N NNz

j real(valj) img(valj)

jNNZ real(valNNZ) img(valNNZ)

with N: size of matrix, and NNZ: number of non-zero elements.

e mytestB.mtx should contain the matrix B (if any) in coordinate format;

e mytest.in should contain the search interval, selected FEAST parameters, etc. The following . in file
is given as a template example (here for solving a standard eigenvalue problem in double precision):

s ! s: symmetric, h: hermitian, g: general

g ! e=standard or g=generalized eigenvalue problem

d ! (d,z) precision i.e (double real, double complex)

F ! UPLO (L: lower, U: upper, F: full) for the coordinate format of matrices
0.18d0 ! Emin

1.00d0 ! Emax

25 ! MO search subspace (M0O>=M)

2 'ttt How many changes from default fpm(1,64) (use 1-64 indexing)

11 1fpm(1)=1 'example comments on/off (0,1)

2 4 1fpm(2)=4 !number of contour points

You may change any of the above options to fit your needs. For example, you could add as many
fpm FEAST parameters as you wish. You can also use the flag fpm(43)=1 to switch to IFEAST.
In addition, the L or U options for UPLO give you the possibility to provide only the lower or upper
triangular part of the matrices mytest.mtx and mytestB.mtx in coordinate format.

Finally results and timing can be obtained by running the FEAST sparse driver:

./driver_feast_sparse <PATH_TO_MYTEST>/mytest ‘

In addition, all the eigenvalue solutions will be locally saved in the file eig.out.

For the PFEAST sparse drivers, a run would look like (other options could be applied):

mpirun -env MKL_NUM_THREADS <omp> -ppn 1 -n <nL1> ./driver_pfeast_sparse

<PATH_TO_MYTEST>/mytest nL3

where < nL1 > represents the total number of MPI processes to use for a single contour, and nL3 is
the number of MPI processes used for solving the linear systems. As a reminder, L3 uses MKL-Cluster-
PARDISO with PFEAST, and PBicGStab with PIFEAST. The level L3 can also be threaded by setting

37

the shell variable MKL_NUM_THREADS equal to the desired number of threads. Make sure that <omp>*<nL1>
does not exceed the number of physical cores. Several combinations of <nL1>, <nL3> and <omp> are possible
depending also on the value of the -ppn directive.

In order to illustrate a direct use of the utility drivers, several examples are provided in the directory
$FEASTROOT/utility/data summarized in Table

Real Complex Symmetric Hermitian General Standard Generalized

helloworld X X X
system1 X X X
system?2 X X X
system3 X X X
system4 X X X
cnt X X X
co X X X
c6h6 X X X
Nab X X X
grear X X X
qc324 X X X
besstk11 X X X

Table 12: List of system matrices provided in the $FEASTROOT/utility/data directory. System 1 to 4
corresponds to the matrices used in the example directory.

To run a specific test, you can execute using the FEAST driver (for example):

’ ./driver_feast_sparse ../data/cnt ‘

or using the PFEAST driver (for example):

’mpirun -env MKL_NUM_THREADS 2 -n 4 ./driver_pfeast_sparse ../data/cnt 2

Here we use 8 total compute cores and nL1=4 MPI, nL.2=nl.1/nL.3=2 MPI, nL.3=2 MPI, omp=2 threads.

38

	Table of Contents
	Background
	The FEAST Algorithm
	The FEAST Solver

	Installation and Setup: A Step by Step Procedure
	Installation
	Compilation
	Linking FEAST
	HelloWorld Example (F90, C, MPI-F90, MPI-C)

	FEAST Interfaces
	At a Glance
	FEAST Hermitian
	FEAST Non-Hermitian
	FEAST Polynomial (quadratic, cubic, quartic, etc.)
	IFEAST (FEAST w/o Factorization)
	PFEAST and PIFEAST (MPI-solver)

	Complement
	Matrix storage
	Search contour
	Contour Customization
	FEAST utility sparse drivers

