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Abstract

The AST library provides a comprehensive range of facilities for attaching world coordinate
systems to astronomical data, for retrieving and interpreting that information in a variety of
formats, including FITS-WCS, and for generating graphical output based on it.

This programmer’s manual should be of interest to anyone writing astronomical applications
which need to manipulate coordinate system data, especially celestial or spectral coordinate
systems. AST is portable and environment-independent.

Copyright (C) 2017 East Asian Observatory
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1 SUN/210.28 —Introduction

This is the Fortran version of this document.
For the C version, please see SUN/211,

1 Introduction

Welcome to the AST library. If you are writing software for astronomy and need to use celestial
coordinates (e.g. RA and Dec), spectral coordinates (e.g. wavelength, frequency, etc.), or other
coordinate system information, then this library should be of interest. It provides solutions for
most of the problems you will meet and allows you to write robust and flexible software. It is
able to read and write WCS information in a variety of formats, including FITS-WCS.

1.1 What Problems Does AST Tackle?

Here are some of the main problems you may face when handling world coordinate system
(WCS) information and the solutions that AST provides:

1. The Variety of Coordinate Systems

Astronomers use a wide range of differing coordinate systems to describe positions within
a variety of physical domains. For instance, there are a large number of celestial coordinate
systems in use within astronomy to describe positions on the sky. Understanding these,
and knowing how to convert coordinates between them, can require considerable expertise.
It can also be difficult to decide which of them your software should support. The same
applies to coordinate systems describing other domains, such as position within an electro-
magnetic spectrum.

Solution. AST has built-in knowledge of many coordinate systems and allows you to
convert freely between them without specialist knowledge. This avoids the need to embed
details of specific coordinate systems in your software. You also benefit automatically
when new coordinate systems are added to AST.

2. Storing and Retrieving WCS Information
Storing coordinate system information in astronomical datasets and retrieving it later
can present a considerable challenge. Typically, it requires knowledge of rather complex
conventions (e.g. FITS) which are low-level, often mis-interpreted and may be subject to
change. Exchanging information with other software systems is further complicated by
the number of different conventions in use.

Solution. AST combines a unifying high-level description of WCS information with the
ability to save and restore this using a variety of formats. Details of the formats, which
include FITS, are handled internally by AST. This frees you from the need to understand
them or embed the details in your software. Again, you benefit automatically when new
formats are added to AST.

3. Generating Graphical Output
Producing graphical displays involving curvilinear coordinate systems, such as celestial


http://www.starlink.ac.uk/cgi-bin/htxserver/sun211.htx/sun211.html?xref_
http://fits.gsfc.nasa.gov/fits_wcs.html
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coordinate grids, can be complicated. Particular difficulties arise when handling large
areas of sky, the polar regions and discontinuous (e.g. segmented) sky projections. Even
just numbering and labelling curvilinear axes is rarely straightforward.

Solution. AST provides plotting facilities especially designed for use with curvilinear
coordinate systems. These include the plotting of axes and complete labelled coordinate
grids. A large number of options are provided for tailoring the output to your specific
needs. Three dimensional coordinate grids can also be produced.

4. Aligning Data from Different Sources
One of the main uses of coordinate systems is to facilitate the inter-comparison of data
from different sources. A typical use might be to plot (say) radio contours over an optical
image. In practice, however, different celestial coordinate systems may have been used,
making accurate alignment far from simple.

Solution AST provides a one-step method of aligning datasets, searching for all possible
intermediate coordinate systems. This makes it simple to directly inter-relate the pixel
coordinates of different datasets.

5. Handling Different Types of Coordinate [System|
Not all coordinate systems used in astronomy are celestial ones, so if you are writing
general-purpose software such as (say) a display tool, you may also need to handle axes
representing wavelength, distance, time or whatever else comes along. Obviously, you
would prefer not to handle each one as a special case.

Solution AST uses the same flexible high-level model to describe all types of coordinate
system. This allows you to write software that handles different kinds of coordinate axis
without introducing special cases.

1.2 Other Design Objectives

As well as its scientific objectives, the AST library’s design includes a number of technical
criteria intended to make it applicable to as wide a range of projects as possible. The main
considerations are described here:

(1) Minimum Software Dependencies. The AST library depends on no other other softwardﬂ

(2) Environment Independence. AST is designed so that it can operate in a variety of “pro-
gramming environments” and is not tied to any particular one. To allow this, it uses
simple, flexible interfaces to obtain the following services:

e Data Storage. Data I/O operations are based on text and/or FITS headers. This
makes it easy to interface to a wide variety of astronomical data formats in a machine-
independent way.

e Graphics. Graphical output is produced via a simple generic graphics interface,
which may easily be re-implemented over different graphics systems. AST pro-
vides a default implementation based on the widely-used PGPLOT graphics system
(SUN/15).

11t comes with bundled copies of the ERFA and Starlink PAL libraries which are built at the same time as
the other AST internal libraries. Alternatively, external PAL and ERFA libraries may be used by specifying the
“-with-external_pal” option when configuring AST



http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun268.htx/sun268.html?xref_

)
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e Error Handling. Error messages are written to standard error by default, but go
through a simple generic interface similar to that used for graphics (above). This
permits error message delivery via other routes when necessary (e.g. in a graphical
interface).

Multiple Language Support. AST has been designed to be called from more than one
language. Both Fortran and C interfaces are available (see SUN /211 for the C version) and
use from C++ is also straightforward if the C interface is included using;:

extern "C" {
#include "ast.h"

}

A JNI interface (known as “JNIAST” - see http://www.starlink.ac.uk/jniast/) has also
been developed by Starlink which allows AST to be used from Java.

(4) Oriented Design. AST uses “object oriented” techniques internally in order to

)

1.3

provide a flexible and easily-extended programming model. A fairly traditional call-
ing interface is provided, however, so that the library’s facilities are easily accessible to
programmers using Fortran and C.

Portability. AST is implemented entirely in ANSI standard C and, when called via its C
interface, makes no explicit use of any machine-dependent facilities.

The Fortran interface is, unavoidably, machine dependent. However, the potential for
problems has been minimised by encapsulating the interface layer in a compact set of C
macros which facilitate its transfer to other platforms. No Fortran compiler is needed to
build the library.

Currently, AST is supported by Starlink on PC Linux, Sun Solaris and Tru64 Unix (formerly
DEC UNIX) platforms.

What Does “AST” Stand For?

The library name “AST” stands for “ASTrometry Library”. The name arose when it was thought
that knowledge of “astrometry” (i.e. celestial coordinate systems) would form the bulk of the
library. In fact, it turns out that astrometry forms only a minor component, but the name AST
has stuck.


http://www.starlink.ac.uk/cgi-bin/htxserver/sun211.htx/sun211.html?xref_
http://www.starlink.ac.uk/jniast/
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2  Overview of AST Concepts

This section presents a brief overview of AST concepts. It is intended as a basic orientation
course before you move on to the more technical considerations in subsequent sections.

2.1 Relationships Between Coordinate Systems

The relationships between coordinate systems are represented in AST by Objects called Map-
pings. A does not represent a coordinate system itself, but merely the process by which
you move from one coordinate system to another related one.

A convenient picture of a Mapping is as a “black box” (Figure|1) into which you can feed sets of
coordinates.

Forward
/
*—>»
Input . Output
Coordinates A Mapplng Coordinates
*—>»
.
h Inverse

Figure 1: A Mapping viewed as a “black box” for transforming coordinates.

For each set you feed in, the Mapping returns a corresponding set of transformed coordinates.
Since each set of coordinates represents a point in a coordinate space, the Mapping acts to
inter-relate corresponding positions in the two spaces, although what these spaces represent
is unspecified. Notice that a Mapping need not have the same number of input and output
coordinates. That is, the two coordinate spaces which it inter-relates need not have the same
number of dimensions.

In many cases, the transformation can, in principle, be performed in either direction: either from
the input coordinate space to the output, or vice versa. The first of these is termed the forward
transformation and the other the inverse transformation.

Further reading: For a more complete discussion of Mappings, see

2.2 Mappings Available

The basic concept of a (§2.1) is rather generic and obviously it is necessary to have spe-
cific Mappings that implement specific relationships between coordinate systems. AST provides
a range of these, to perform transformations such as the following and, where appropriate, their
inverses:
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e Conversions between various celestial coordinate systems (the(SlaMap).

e Conversions between various spectral coordinate systems (the SpecMap|and |GrismMap).

e Conversions between various time systems (the TimeMap).

e Conversion between 2-dimensional spherical celestial coordinates (longitude and latitude)

and a 3-dimensional vectorial positions (the[SphMap).

e Various projections of the celestial sphere on to 2-dimensional coordinate spaces—i.e. map
projections (the [DssMap|and [WcsMap).

e Permutation, introduction and elimination of coordinates (the PermMap).

e Various linear coordinate transformations (the MatrixMap} WinMapl} [ShiftMap|and |[ZoomMap).

e General N-dimensional polynomial transformations (the [PolyMap|and [ChebyMap).
e Lookup tables (the [LutMap).

e General-purpose transformations expressed using arithmetic operations and functions
similar to those available in Fortran (the MathMap).

e Transformations for internal use within a program, based on private transformation

routines which you write yourself in Fortran (the|IntraMap).

Further reading: For a more complete description of each of the Mappings mentioned above, see
its entry in Appendix D} In addition, see the discussion of the PermMap in §5.11} the [UnitMap
in §5.10/and the IntraMap in The ZoomMap is used as an example throughout §4|

2.3 Compound Mappings

The Mappings described in provide a set of basic building blocks from which more complex
Mappings may be constructed. The key to doing this is a type of called a or
compound Mapping. A CmpMap’s role is, in principle, very simple: it allows any other pair of
Mappings to be joined together into a single entity which behaves as if it were a single Mapping.
A CmpMap is therefore a container for another pair of Mappings.

A pair of Mappings may be combined using a CmpMap in either of two ways. The first of these,
in series, is illustrated in Figure [2}

Here, the transformations implemented by each component Mapping are performed one after
the other, with the output from the first Mapping feeding into the second. The second way, in
parallel, is shown in Figure

In this case, each Mapping acts on a complementary subset of the input and output CoordinatesEI

The CmpMap forms the key to building arbitrarily complex Mappings because it is itself a form
of Mapping. This means that a CmpMap may contain other CmpMaps as components (e.g.
Figure ). This nesting of CmpMaps can be repeated indefinitely, so that complex Mappings
may be built in a hierarchical manner out of simper ones. This gives AST great flexibility in the

2 A pair of Mappings can be combined in a third way using a A TranMap allows the forward transfor-
mation of one Mapping to be combined with the inverse transformation of another to produce a single Mapping.
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CmpMap

Mapping A Mapping B

Figure 2: A CmpMap (compound Mapping) composed of two component Mappings joined in
series. The output coordinates of the first Mapping feed into the input coordinates of the second
one, so that the whole entity behaves like a single Mapping.

/ CmpMap

Mapping A

Mapping B

Figure 3: A CmpMap composed of two Mappings joined in parallel. Each component Mapping
acts on a complementary subset of the input and output coordinates.
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/

Mapping B

Mapping A

Mapping C

Figure 4: CmpMaps (compound Mappings) may be nested in order to construct complex
Mappings out of simpler building blocks.

coordinate transformations it can describe.

Further reading: For a more complete description of CmpMaps, see §6} Also see the CmpMap
entry in Appendix|D}

2.4 Representing Coordinate Systems

While Mappings (§2.1) represent the relationships between coordinate systems in AST, the
coordinate systems themselves are represented by Objects called Frames (Figure |5).

A Frame is similar in concept to the frame you might draw around a graph. It contains
information about the labels which appear on the axes, the axis units, a title, knowledge of how
to format the coordinate values on each axis, efc. An AST Frame is not, however, restricted to
two dimensions and may have any number of axes.

A basic Frame may be used to represent a Cartesian coordinate system by setting values for
its attributes (all AST Objects have values associated with them called attributes, which may
be set and enquired). Usually, this would involve setting appropriate axis labels and units, for
example. Routines are provided for use with Frames to perform operations such as formatting
coordinate values as text, calculating distances between points, interchanging axes, etc.

There are several more specialised forms of Frame, which provide the additional functionality
required when handling coordinates within some specific physical domain. This ranges from
tasks such as formatting axis values, to complex tasks such as determining the transformation
between any pair of related coordinate systems. For instance, the SkyFrame (Figure [Bp,c),
represents celestial coordinate systems, the represents spectral coordinate systems,
and the represents time coordinate systems. All these provide a wide range of
different systems for describing positions within their associated physical domain, and these
may be selected by setting appropriate attributes.

As with compound Mappings (§2.3), it is possible to merge two Frames together to form a
compound Frame, or in which both sets of axes are combined. One could, for
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x1 b)
x2
SkyFrame
RA
o Dec )
SkyFrame

RA
Dec o

Figure 5: (a) A basic Frame is used to represent a Cartesian coordinate system, here 2-
dimensional. (b) A represents a (spherical) celestial coordinate system. (c) The
axis order of any [Frame|may be permuted to match the coordinate space it describes.

example, have celestial coordinates on two axes and an unrelated coordinate (wavelength,
perhaps) on a third (Figure [p). Knowledge of the relationships between the axes is preserved
internally by the process of constructing the CmpFrame which represents them.

Further reading: For a more complete description of Frames see §7} for SkyFrames see §§and
for SpecFrames see @ Also see the Frame, SkyFrame, SpecFrame, TimeFrame and CmpFrame
entries in Appendix D

2.5 Networks of Coordinate Systems

Mappings and Frames may be connected together to form networks called FrameSets, which
are used to represent sets of inter-related coordinate systems (Figure[7).

A may be extended by adding a new to it, together with an associated [Mapping]

which relates the new coordinate system to one which is already present. This process ensures
that there is always exactly one path, via Mappings, between any pair of Frames. A function is
provided for identifying this path and returning the complete Mapping.

One of the Frames in a FrameSet is termed its base Frame. This underlies the FrameSet’s purpose,
which is to calibrate datasets and other entities by attaching coordinate systems to them. In
this context, the base Frame represents the “native” coordinate system (for example, the pixel
coordinates of an image). Similarly, one Frame is termed the current Frame and represents
the “currently-selected” coordinates. It might, typically, be a celestial or spectral coordinate
system and would be used during interactions with a user, as when plotting axes on a graph or
producing a table of results. Other Frames within the FrameSet represent a library of alternative
coordinate systems which a software user can select by making them current.
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/ CmpFrame

(SkyFrame
RA
Dec

Frame
Wavelength

Figure 6: A CmpFrame (compound Frame) formed by combining two simpler Frames. Note
how the special relationship which exists between the RA and Dec axes is preserved within this
data structure. As with compound Mappings (Figure #), CmpFrames may be nested in order to
build more complex Frames.

Further reading: For a more complete description of FrameSets, see §13{and Also see the
FrameSet entry in Appendix|D}

2.6 Input/Output Facilities

AST allows you to convert any kind of into a stream of text which contains a full
description of that Object. This text may be written out by one program and read back in by
another, thus allowing the original Object to be reconstructed.

The filter which converts Objects into text and back again is itself a kind of Object, called a
A Channel provides a number of options for controlling the information content of the
text, such as the addition of comments for human interpretation. It is also possible to intercept
the text being processed by a Channel so that it may be redirected to/from any chosen external
data store, such as a text file, an astronomical dataset, or a network connection.

The text format used by the basic Channel class is peculiar to the AST library - no other software
will understand it. However, more specialised forms of Channel are provided which use text
formats more widely understood.

To further facilitate the storage of coordinate system information in astronomical datasets, a
more specialised form of Channel called a[FitsChan|is provided. Instead of using free-format text,
a FitsChan converts AST Objects to and from FITS header cards. It also allows the information
to be encoded in the FITS cards in a number of ways (called encodings), so that WCS information
from a variety of sources can be handled.

Another sub-class of Channel, called is a specialised form of Channel that stores
the text in the form of XML markup. Currently, two markup formats are provided by the
XmlChan class, one is closely related to the text format produced by the basic Channel class
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Frame 1 Current Frame
Mappmg

Frame 3

Mapping

Figure 7: A FrameSet is a network of Frames inter-connected by Mappings such that there is
exactly one conversion path, via Mappings, between any pair of Frames.
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(currently, no schema or DTD is available describing this format). The other is a subset of
an early draft of the IVOA Space-Time-Coordinates XML (STC-X) schema (V1.20) described
athttp://www.ivoa.net/Documents/WD/STC/STC-20050225. htmlf} The version of STC-X that
has been adopted by the IVOA differs in several significant respects from V1.20, and therefore
this XmlChan format is of historical interest only.

Finally, the class provides facilities for reading and writing IVOA STC-S region de-
scriptions. STC-S (see http://www.ivoa.net/Documents/latest/STC-S.html) is a linear string
syntax that allows simple specification of STC metadata. AST supports a subset of the STC-S
specification, allowing an STC-S description of a region within an AST-supported astronomical
coordinate system to be converted into an equivalent AST object, and vice-versa.

Further reading: For a more complete description of Channels see and for FitsChans see

and Also see the Channel and FitsChan entries in Appendix[D|and the entry
in Appendix [C}

2.7 Producing Graphical Output

Two dimensional graphical output is supported by a specialised form of [FrameSet| called a
whose base corresponds with the native coordinates of the underlying graphics system.
Plotting operations are specified in physical coordinates which correspond with the Plot’s current
Frame. Typically, this might be a celestial coordinate system.

Three dimensional plotting is also supported, via the class - sub-class of Plot.

Operations, such as drawing lines, are automatically transformed from physical to graphical
coordinates before plotting, using an adaptive algorithm which ensures smooth curves (because
the transformation is usually non-linear). “Missing” coordinates (e.g. graphical coordinates
which do not project on to the celestial sphere), discontinuities and generalised clipping are all
consistently handled. It is possible, for example, to plot in equatorial coordinates and clip in
galactic coordinates. The usual plotting operations are provided (text, markers), but a geodesic
curve replaces the primitive straight line element. There is also a separate function for drawing
axis lines, since these are normally not geodesics.

In addition to drawing coordinate grids over an area of the sky, another common use of the
Plot class is to produce line plots such as flux against wavelength, displacement again time, etc.
For these situations the current Frame of the Plot would be a compound Frame
containing a pair of 1-dimensional Frames - the first representing the X axis quantity (wavelength,
time, etc), and the second representing the Y axis quantity (flux, displacement, etc). The Plot
class includes an option for axes to be plotted logarithmically.

Perhaps the most useful graphics function available is for drawing fully annotated coordinate
grids (e.. Figure8).

This uses a general algorithm which does not depend on knowledge of the coordinates being
represented, so can also handle programmer-defined coordinate systems. Grids for all-sky
projections, including polar regions, can be drawn and most aspects of the output (colour, line
style, etc.) can be adjusted by setting appropriate Plot attributes.

3XML documents which use only the subset of the STC schema supported by AST can be read by the XmIChan
class to produce corresponding AST objects (subclasses of theclass). However, the reverse is not possible. That is,
AST objects can not currently be written out in the form of STC documents.


http://www.ivoa.net/Documents/WD/STC/STC-20050225.html 
http://www.ivoa.net/Documents/latest/STC-S.html
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Ecliptic coordinates; mean equinox J2000.0

Figure 8: A labelled coordinate grid for an all-sky zenithal equal area projection in ecliptic
coordinates. This was composed and drawn via a Plot using a single subroutine call.

Further reading: For a more complete description of Plots and how to produce graphical output,
see §21] Also see the Plot entry in Appendix D}
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3 How To...

For those of you with a plane to catch, this section provides some instant templates and recipes
for performing the most commonly-required operations using AST, but without going into
detail. The examples given (sort of) follow on from each other, so you should be able to construct
a variety of programs by piecing them together. Note that some of them appear longer than
they actually are, because we have included plenty of comments and a few options that you
probably won’t need.

If any of this material has you completely baffled, then you may want to read the introduction
to AST programming concepts in §4|first. Otherwise, references to more detailed reading are
given after each example, just in case they don’t quite do what you want.

3.1 ...Obtain and Install AST

The AST library is available both as a stand-alone package and also as part of the Starlink
Software Collectiorﬁ If your site has the Starlink Software Collection installed then AST should
already be available.

If not, you can download the AST library by itself from http://www.starlink.ac.uk/ast/.

3.2 ...Structure an AST Program
An AST program normally has the following structure:

* Include the interface to the AST library.
INCLUDE ’AST_PAR’

* Declare an integer status variable.
INTEGER STATUS
<maybe other declarations>

* Initialise the status to zero.
STATUS = 0
<maybe some Fortran statements>

* Enclose the parts which use AST between AST_BEGIN and AST_END calls.
CALL AST_BEGIN( STATUS )
<Fortran statements which use AST>
CALL AST_END( STATUS )

<maybe more Fortran statements>
END

The use of [AST_BEGIN|and [AST_END]is optional, but has the effect of tidying up after you
have finished using AST, so is normally recommended. For more details of this, see For
details of how to access the AST_PAR include file, see §22.1]

4The Starlink Software Collection can be downloaded from http: //www.starlink.ac.uk/Download/


http://www.starlink.ac.uk/ast/
http://www.starlink.ac.uk/Download/
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3.3 ...Build an AST Program

To build a simple AST program that doesn’t use graphics, use:
f77 program.f -L/star/lib -I/star/include ‘ast_link‘ -o program

On Linux systems you should usually use g77 -fno-second-underscore in place of £77 - see
“Software development on Linux” in SUN/212.

To build a program which uses PGPLOT for graphics, use:
f77 program.f -L/star/lib ‘ast_link -pgplot® -o program

again using g77 -fno-second-underscore in place of £77 on Linux systems.

For more details about accessing AST include files, see §22.1| For more details about linking
programs, see §22.2]and the description of the “fast_ITink]” command in Appendix [E}

3.4 ...Read a WCS Calibration from a Dataset

Precisely how you extract world coordinate system (WCS) information from a dataset obviously
depends on what type of dataset it is. Usually, however, you should be able to obtain a set
of FITS header cards which contain the WCS information (and probably much more besides).
Suppose that CARDS is an array of character strings containing a complete set of FITS header
cards and NCARD is the number of cards. Then proceed as follows:

INTEGER FITSCHAN, ICARD, NCARD, WCSINFO
CHARACTER * ( 80 ) CARDS( NCARD )

* Create a FitsChan and fill it with FITS header cards.
FITSCHAN = AST_FITSCHAN( AST_NULL, AST_NULL, > ’, STATUS )
DO 1 ICARD = 1, NCARD
CALL AST_PUTFITS( FITSCHAN, CARDS( ICARD ), .FALSE., STATUS )
1 CONTINUE

* Rewind the FitsChan and read WCS information from it.
CALL AST_CLEAR( FITSCHAN, ’Card’, STATUS )
WCSINFO = AST_READ( FITSCHAN, STATUS )

The result should be a pointer, WCSINFO, to a[FrameSet| which contains the WCS information.
This pointer can now be used to perform many useful tasks, some of which are illustrated in the
following recipes.

Some datasets which do not easily yield FITS header cards may require a different approach,
possibly involving use of a[Channell or XmIChan| (§15) rather than a In the case of
the Starlink NDF data format, for example, all the above may be replaced by a single call to
the routine NDF_GTWCS—see SUN /33, The whole process can probably be encapsulated in a
similar way for most other data systems, whether they use FITS header cards or not.

For more details about reading WCS information from datasets, see §17.3|and §17.4, For a more
general description of FitsChans and their use with FITS header cards, see §16/and For
more details about FrameSets, see §13]and



http://www.starlink.ac.uk/cgi-bin/htxserver/sun212.htx/sun212.html?xref_software_development_on_linux
http://www.starlink.ac.uk/cgi-bin/htxserver/sun212.htx/sun212.html?xref_
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_GTWCS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
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3.5 ...Validate WCS Information

Once you have read WCS information from a dataset, as in you may wish to check that
you have been successful. The following will detect and classify the things that might possibly
go wrong;:

IF ( STATUS .NE. O ) THEN
<an error occurred (a message will have been issued)>
ELSE IF ( WCSINFO .EQ. AST__NULL ) THEN
<there was no WCS information present>
ELSE IF ( AST_GETC( WCSINFO, ’Class’, STATUS ) .NE. ’FrameSet’ ) THEN
<something unexpected was read (i.e. not a FrameSet)>
ELSE
<WCS information was read OK>
END IF

For more information about detecting errors in AST routines, see §4.13| For details of how to
validate input data read by AST, see §15.6|and §17.4]

3.6 ...Display AST Data

If you have a pointer to any AST[Object, you can display the data stored in that Object in textual
form as follows:

CALL AST_SHOW( WCSINFQO, STATUS )

Here, we have used a pointer to the[FrameSet| which we read earlier (§3.4). The result is written
to the program’s standard output stream. This can be very useful during debugging.

For more details about using see §4.4, For information about interpreting the
output, also see §15.8]

3.7 ...Convert Between Pixel and World Coordinates

You may use a pointer to a such as we read in to transform a set of points
between the pixel coordinates of an image and the associated world coordinates. If you are
working in two dimensions, proceed as follows:

INTEGER N
DOUBLE PRECISION XPIXEL( N ), YPIXEL( N )
DOUBLE PRECISION XWORLD( N ), YWORLD( N )

CALL AST_TRAN2( WCSINFO, N, XPIXEL, YPIXEL, .TRUE.,
: XWORLD, YWORLD, STATUS )

Here, N is the number of points to be transformed, XPIXEL and YPIXEL hold the pixel coordi-
nates, and XWORLD and YWORLD receive the returned world coordinatesﬁ To transform in

5By pixel coordinates, we mean a coordinate system in which the first pixel in the image is centred on (1,1) and
each pixel is a unit square. Note that the world coordinates will not necessarily be celestial coordinates, but if they
are, then they will be in radians.
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the opposite direction, interchange the two pairs of arrays (so that the world coordinates are
given as input) and change the fifth argument of[AST_TRAN2|to .FALSE..

To transform points in one dimension, use|/AST_TRANI| In any other number of dimensions
(or if the number of dimensions is initially unknown), use AST_TRANN| These routines are
described in Appendix

For more information about transforming coordinates, see §4.8/and §13.6| For details of how to
handle missing coordinates, see

3.8 ...Testif a WCS is a Celestial Coordinate System

The world coordinate system (WCS) currently associated with an image may often be a celestial
coordinate system, but this need not necessarily be the case. For instance, instead of right
ascension and declination, an image might have a WCS with axes representing wavelength and
slit position, or maybe just plain old pixels.

If you have obtained a WCS calibration for an image, as in in the form of a pointer
WCSINFO to a then you may determine if the current coordinate system is a celestial
one or not, as follows:

INTEGER FRAME
LOGICAL ISSKY

* (Obtain a pointer to the current Frame and determine if it is a
* SkyFrame.

FRAME = AST_GETFRAME( WCSINFO, AST__CURRENT, STATUS )

ISSKY = AST_ISASKYFRAME( FRAME, STATUS )

CALL AST_ANNUL( FRAME, STATUS )

This will set ISSKY to .TRUE. if the WCS is a celestial coordinate system, and to .FALSE.
otherwise.

3.9 ...Testif a WCS is a Spectral Coordinate System

Testing for a spectral coordinate system is basically the same as testing for a celestial coordinate
system (see the previous section). The one difference is that you use the AST_ISASPECFRAME
routine in place of the AST_ISASKYFRAME routine.

3.10 ...Format Coordinates for Display

Once you have converted pixel coordinates into world coordinates (§3.7), you may want to
format them as text before displaying them. Typically, this would convert from (say) radians
into something more comprehensible. Using the [FrameSet| pointer WCSINFO obtained in
and a pair of world coordinates XW and YW (e.g. see §3.7), you could proceed as follows:

CHARACTER * ( 20 ) XTEXT, YTEXT
DOUBLE PRECISION XW, YW
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XTEXT
YTEXT

AST_FORMAT( WCSINFO, 1, XW, STATUS )
AST_FORMAT( WCSINFO, 2, YW, STATUS )

WRITE ( %, 199 ) XTEXT, YTEXT
199 FORMAT( ’Position = 2, A, >, >, A )

Here, the second argument to[AST_FORMAT]is the axis number.

With celestial coordinates, this will usually result in sexagesimal notation, such as “12:34:56.7”.
However, the same method may be applied to any type of coordinates and appropriate format-
ting will be employed.

For more information about formatting coordinate values and how to control the style of
formatting used, see and If necessary, also see for details of how to “normalise” a
set of coordinates so that they lie within the standard range (e.g. 0 to 24 hours for right ascension
and +90° for declination).

3.11 ...Display Coordinates as they are Transformed

In addition to formatting coordinates as part of a program’s output, you may also want to
examine coordinate values while debugging your program. To save time, you can “eavesdrop”
on the coordinate values being processed every time they are transformed. For example, when

using the pointer WCSINFO obtained in to transform coordinates (§3.7), you
could inspect the coordinate values as follows:

CALL AST_SET( WCSINFO, ’Report=1’, STATUS )
CALL AST_TRAN2( WCSINFO, N, XPIXEL, YPIXEL, .TRUE.,
: XWORLD, YWORLD, STATUS )

By setting the FrameSet’s attribute to 1, coordinate transformations are automatically
displayed on the program’s standard output stream, appropriately formatted, for example:

(42.1087, 20.2717) --> (2:06:03.0, 34:22:39)
(43.0197, 21.1705) --> (2:08:20.6, 35:31:24)
(43.9295, 22.0716) --> (2:10:38.1, 36:40:09)
(44.8382, 22.9753) --> (2:12:55.6, 37:48:55)
(45.7459, 23.8814) --> (2:15:13.1, 38:57:40)
(46.6528, 24.7901) --> (2:17:30.6, 40:06:25)
(47.5589, 25.7013) --> (2:19:48.1, 41:15:11)
(48.4644, 26.6149) --> (2:22:05.6, 42:23:56)
(49.3695, 27.5311) --> (2:24:23.1, 43:32:41)
(50.2742, 28.4499) --> (2:26:40.6, 44:41:27)

For a complete description of the Report attribute, see its entry in Appendix |C| For further
details of how to set and enquire attribute values, see and
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3.12 ...Read Coordinates Entered by a User

In addition to writing out coordinate values generated by your program (§3.10), you may also
need to accept coordinates entered by a user, or perhaps read from a file. In this case, you will
probably want to allow “free-format” input, so that the user has some flexibility in the format
that can be used. You will probably also want to detect any typing errors.

Let’s assume that you want to read a number of lines of text, each containing the world coordi-
nates of a single point, and to split each line into individual numerical coordinate values. Using
the pointer WCSINFO obtained earlier (§3.4), you could proceed as follows:

CHARACTER TEXT * ( 80 )
DOUBLE PRECISION COORD( 10 )
INTEGER IAXIS, N, NAXES, T

* Obtain the number of coordinate axes (if not already known).
NAXES = AST_GETI( WCSINFO, ’Naxes’, STATUS )

Loop to read each line of input text, in this case from the
standard input channel (your programming environment will probably
provide a better way of reading text than this). Set the index T to
the start of each line read.
2 CONTINUE
READ( *, ’(A)’, END=99 ) TEXT
T=1

* ¥ X *x

* Attempt to read a coordinate for each axis.
DO 3 IAXIS = 1, NAXES
N = AST_UNFORMAT( WCSINFO, IAXIS, TEXT( T : ), COORD( IAXIS ),
STATUS )

If nothing was read and this is not the first axis and the end of
the text has not been reached, try stepping over a separator and
reading again.

IF ( ( N .EQ. O ) .AND. ( IAXIS .GT. 1 ) .AND.

(T .LT. LEN(C STRING ) ) ) THEN
=T+ 1
AST_UNFORMAT( WCSINFO, IAXIS, TEXT( T : ),
COORD( IAXIS ), STATUS )

T
N

END IF

* Quit if nothing was read, otherwise move on to the next coordinate.
IF ( N .EQ. O ) GO TO 4
T=T+N

CONTINUE

4 CONTINUE

w

* Test for the possible errors that may occur...

* Error detected by AST (a message will have been issued).
IF ( STATUS .NE. 0 ) THEN
GO TO 99
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* Error in input data at character TEXT( T + N : T + N ).
ELSE IF ( ( T .LT. LEN(C STRING ) ) .OR. ( N .EQ. O ) ) THEN
<handle the error, or report your own message here>
GO TO 99

ELSE
<coordinates were read 0K>
END IF

* Return to read the next input line.
GO TO 2
99  CONTINUE

This algorithm has the advantage of accepting free-format input in whatever style is appropriate
for the world coordinates in use (under the control of the FrameSet whose pointer you provide).
For example, wavelength values might be read as floating point numbers (e.g. “1.047” or “4787”),
whereas celestial positions could be given in sexagesimal format (e.g. “12:34:56” or “12 34.5”)
and would be converted into radians. Individual coordinate values may be separated by white
space and/or any non-ambiguous separator character, such as a comma.

For more information on reading coordinate values using the AST_UNFORMAT] function, see
For details of how sexagesimal formats are handled, and the forms of input that may be
used for for celestial coordinates, see

3.13 ...Create a New WCS Calibration

This section describes how to add a WCS calibration to a data set which you are creating from
scratch, rather than modifying an existing data set.

In most common cases, the simplest way to create a new WCS calibration from scratch is
probably to create a set of strings describing the required calibration in terms of the keywords
used by the FITS WCS standard, and then convert these strings into an AST describing
the calibration. This FrameSet can then be used for many other purposes, or simply stored in
the data set.

The full FITS-WCS standard is quite involved, currently running to four separate papers, but the
basic kernel is quite simple, involving the following keywords (all of which end with an integer
axis index, indicated below by < i >):

CRPIX<i>
hold the pixel coordinates at a reference point

CRVAL<i>
hold the corresponding WCS coordinates at the reference point

CTYPE<i>
name the quantity represented by the WCS axes, together with the projection algorithm
used to convert the scaled and rotated pixel coordinates to WCS coordinates.

CD<i>_<j>
a set of keywords which specify the elements of a matrix. This matrix scales pixel offsets
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from the reference point into the offsets required as input by the projection algorithm
specified by the CTYPE keywords. This matrix specifies the scale and rotation of the image.
If there is no rotation the off-diagonal elements of the matrix (e.g. CD1_2 and CD2_1) can
be omitted.

As an example consider the common case of a simple 2D image of the sky in which north is
parallel to the second pixel axis and east parallel to the (negative) first pixel axis. The image
scale is 1.2 arc-seconds per pixel on both axes, and the image is presumed to have been obtained
with a tangent plane projection. Furthermore, it is known that pixel coordinates (100.5,98.4)
correspond to an RA of 11:00:10 and a Dec. of -23:26:02. A suitable set of FITS-WCS header cards
could be:

CTYPE1 = ’RA---TAN’ / Axis 1 represents RA with a tan projection
CTYPE2 = ’DEC--TAN’ / Axis 2 represents Dec with a tan projection
CRPIX1 = 100.5 / Pixel coordinates of reference point

CRPIX2 = 98.4 / Pixel coordinates of reference point

CRVAL1 = 165.04167 / Degrees equivalent of "11:00:10" hours

CRVAL2 = -23.433889 / Decimal equivalent of "-23:26:02" degrees
Chi_1 = -0.0003333333 / Decimal degrees equivalent of -1.2 arc-seconds
Cbh2_2 = 0.0003333333 / Decimal degrees equivalent of 1.2 arc-seconds

Notes:

e a FITS header card begins with the keyword name starting at column 1, has an equals sign
in column 9, and the keyword value in columns 11 to 80.

e string values must be enclosed in single quotes.

o celestial longitude and latitude must both be specified in decimal degrees.

e the CD1_1 value is negative to indicate that RA increases as the first pixel axis decreases.
e the (RA,Dec) coordinates will be taken as ICRS coordinates. For FK5 you should add:

RADESYS ’FK5°
EQUINOX = 2005.6

]

The EQUINOX value defaults to J2000.0 if omitted. FK4 can also be used in place of FK5,
in which case EQUINOX defaults to B1950.0.

Once you have created these FITS-WCS header card strings, you should store them in a[FitsChan|
and then read the corresponding FrameSet from the FitsChan. How to do this is described in

84

Having created the WCS calibration, you may want to store it in a data file. How to do this is
described in §3.15) E]

If the required WCS calibration cannot be described as a set of FITS-WCS headers, then a
different approach is necessary. In this case, you should first create a describing pixel

o1f you are writing the WCS calibration to a FITS file you obviously have the choice of storing the FITS-WCS cards
directly.
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coordinates, and store this Frame in a new FrameSet. You should then create a new Frame
describing the world coordinate system. This Frame may be a specific subclass of Frame such as
a for celestial coordinates, a[SpecFrame|for spectral coordinates, a Timeframe for time
coordinates, or a for a combination of different coordinates. You also need to create
a suitable Mapping| which transforms pixel coordinates into world coordinates. AST provides
many different types of Mappings, all of which can be combined together in arbitrary fashions
to create more complicated Mappings. The WCS Frame should then be added into the FrameSet,
using the Mapping to connect the WCS Frame with the pixel Frame.

3.14 ...Modify a WCS Calibration

The usual reason for wishing to modify the WCS calibration associated with a dataset is that the
data have been geometrically transformed in some way (here, we will assume a 2-dimensional
image dataset). This causes the image features (stars, galaxies, etc.) to move with respect to the
grid of pixels which they occupy, so that any coordinate systems previously associated with the
image become invalid.

To correct for this, it is necessary to set up a[Mapping|which expresses the positions of image
features in the new data grid in terms of their positions in the old grid. In both cases, the grid
coordinates we use will have the first pixel centred at (1,1) with each pixel being a unit square.

AST allows you to correct for any type of geometrical transformation in this way, so long as a
suitable Mapping to describe it can be constructed. For purposes of illustration, we will assume
here that the new image coordinates XNEW and YNEW can be expressed in terms of the old
coordinates XOLD and YOLD as follows:

DOUBLE PRECISION XNEW, XOLD, YNEW, YOLD
DOUBLE PRECISION M( 4 ), Z( 2 )

XNEW
YNEW

XOLD * M( 1) + YOLD * M( 2 ) + Z( 1)
XOLD * M( 3 ) + YOLD * M( 4 ) + Z( 2 )

where M is a 2 X2 transformation matrix and Z represents a shift of origin. This is therefore a gen-
eral linear coordinate transformation which can represent displacement, rotation, magnification
and shear.

In AST, it can be represented by concatenating two Mappings. The first is a which
implements the matrix multiplication. The second is a which linearly transforms one
coordinate window on to another, but will be used here simply to implement the shift of origin
(alternatively, a could have been used in place of a WinMap). These Mappings may be
constructed and concatenated as follows:

DOUBLE PRECISION INA( 2 ), INB( 2 ), OUTAC 2 ), OUTB( 2 )
INTEGER MATRIXMAP, WINMAP

* Set up the corners of a unit square.
DATA INA / 2 * 0.0DO /
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DATA INB / 2 * 1.0D0O /

* The MatrixMap may be constructed directly from the matrix M.
MATRIXMAP = AST_MATRIXMAP( 2, 2, 0, M, ’> ’, STATUS )

For the WinMap, we take the coordinates of the corners of a unit
square (window) and then shift them by the required amounts.

OUTAC 1 ) = INAC 1) + Z( 1)
QUTA(C 2 ) = INAC 2 ) + Z( 2)
OUTB( 1 ) = INB( 1) + Z( 1)
OUTB( 2 ) = INB( 2 ) + Z( 2 )

* The WinMap will then implement this shift.
WINMAP = AST_WINMAP( 2, INA, INB, OUTA, OUTB, ’> ’, STATUS )

Join the two Mappings together, so that they are applied one after
the other.
NEWMAP = AST_CMPMAP( MATRIXMAP, WINMAP, 1, > °, STATUS )

You might, of course, create any other form of Mapping depending on the type of geometrical
transformation involved. For an overview of the Mappings provided by AST, see and for
a description of the capabilities of each class of Mapping, see its entry in Appendix D} For an
overview of how individual Mappings may be combined, see (§6] gives more details).

Assuming you have obtained a WCS calibration for your original image in the form of a
pointer to a WCSINFO1 (§3.4), the Mapping created above may be used to produce a

calibration for the new image as follows:

INTEGER WCSINFO1, WCSINFO2

If necessary, make a copy of the WCS calibration, since we are
about to alter it.
WCSINFO2 = AST_COPY( WCSINFO1, STATUS )

Re-map the base Frame so that it refers to the new data grid
instead of the old one.
CALL AST_REMAPFRAME( WCSINF02, AST__BASE, NEWMAP, STATUS )

This will produce a pointer, WCSINFO2, to a new FrameSet in which all the coordinate systems
associated with the original image are modified so that they are correctly registered with your
new image instead.

For more information about re-mapping the Frames within a FrameSet, see §14.4] Also see §14.5
for a similar example to the above, applicable to the case of reducing the size of an image by
binning.

3.15 ...Write a Modified WCS Calibration to a Dataset

If you have modified the WCS calibration associated with a dataset, such as in the example
above (§3.14), then you will need to write the modified version out along with any new data.
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In the same way as when reading a WCS calibration (§3.4), how you do this will depend on your
data system, but we will assume that you wish to generate a set of FITS header cards that can be
stored with the data. You should usually make preparations for doing this when you first read
the WCS calibration from your input dataset by modifying the example given in as follows:

INTEGER FITSCHAN1, WCSINFO1
CHARACTER * ( 20 ) ENCODE

Create an input FitsChan and fill it with FITS header cards. Note,
if you have all the header cards in a single string, use AST_PUTCARDS in
place of AST_PUTFITS.
FITSCHAN1 = AST_FITSCHAN( AST_NULL, AST_NULL, > ’, STATUS )
DO 1 ICARD = 1, NCARD
CALL AST_PUTFITS( FITSCHAN1, CARDS( ICARD ), .FALSE., STATUS )
1 CONTINUE

* Note which encoding has been used for the WCS information.
ENCODE = AST_GETC( FITSCHAN1, ’Encoding’, STATUS );

* Rewind the input FitsChan and read the WCS information from it.
CALL AST_CLEAR( FITSCHAN1, ’Card’, STATUS )
WCSINFO1 = AST_READ( FITSCHAN1, STATUS )

Note how we have added an enquiry to determine how the WCS information is encoded in
the input FITS cards, storing the resulting string in the ENCODE variable. This must be done
before actually reading the WCS calibration.

Once you have produced a modified WCS calibration for the output dataset (e.g. §3.14), in the
form of a identified by the pointer WCSINFQO?2, you can produce a new

containing the output FITS header cards as follows:

INTEGER FITSCHAN2, JUNK, WCSINFO02

Make a copy of the input FitsChan, AFTER the WCS information has

been read from it. This will propagate all the input FITS header

cards, apart from those describing the WCS calibration.
FITSCHAN2 = AST_COPY( FITSCHAN1, STATUS )

If necessary, make modifications to the cards in FITSCHAN2
(e.g. you might need to change NAXIS1, NAXIS2, etc., to account for
a change in image size). You probably only need to do this if your
data system does not provide these facilities itself.

<details not shown - see below>

* ¥ X ¥

Alternatively, if your data system handles the propagation of FITS

header cards to the output dataset for you, then simply create an

empty FitsChan to contain the output WCS information alone.
FITSCHAN2 = AST_FITSCHAN( AST_NULL, AST_NULL, > ’, STATUS )

* ¥ ¥ ¥
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Rewind the new FitsChan (if necessary) and attempt to write the
output WCS information to it using the same encoding method as the
input dataset.
CALL AST_SET( FITSCHAN2, ’Card=1, Encoding=’ // ENCODE, STATUS )
IF ( AST_WRITE( FITSCHAN2, WCSINF02, STATUS ) .EQ. O ) THEN

If this didn’t work (the WCS FrameSet has become too complex), then
use the native AST encoding instead.
CALL AST_SETC( FITSCHAN2, ’Encoding’, ’NATIVE’, STATUS );
JUNK = AST_WRITE( FITSCHAN2, WCSINF02, STATUS );
END IF

For details of how to modify the contents of the output FitsChan in other ways, such as by
adding, over-writing or deleting header cards, see §16.4} §16.9] §16.8 and §16.13

Once you have assembled the output FITS cards, you may retrieve them from the FitsChan that
contains them as follows:

CHARACTER * ( 80 ) CARD

CALL AST_CLEAR( FITSCHAN2, ’Card’, STATUS )
5 CONTINUE
IF ( AST_FINDFITS( FITSCHAN2, °%f’>, CARD, .TRUE., STATUS ) ) THEN
WRITE ( =, ’(A)’ ) CARD
GO TO 5
END IF

Here, we have simply written each card to the standard output unit, but you would obviously
replace this with a subroutine call to store the cards in your output dataset.

For data systems that do not use FITS header cards, a different approach may be needed, possibly
involving use of a[Channel| or[XmIChan| (§15) rather than a FitsChan. In the case of the Starlink
NDF data format, for example, all of the above may be replaced by a single call to the routine
NDF_PTWCS—see SUN/33. The whole process can probably be encapsulated in a similar way
for most other data systems, whether they use FITS header cards or not.

For an overview of how to propagate WCS information through data processing steps, see
§17.6] For more information about writing WCS information to FitsChans, see §16.5and
For information about the options for encoding WCS information in FITS header cards, see

§16.1] §17.1] and the description of the attribute in Appendix [C} For a complete
understanding of FitsChans and their use with FITS header cards, you should read §16and

3.16 ...Display a Graphical Coordinate Grid

A common requirement when displaying image data is to plot an associated coordinate grid
(e.g. Figure[J) over the displayed image.

The use of AST in such circumstances is independent of the underlying graphics system, so
starting up the graphics system, setting up a coordinate system, displaying the image, and
closing down afterwards can all be done using the graphics routines you would normally use.


http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_NDF_PTWCS
http://www.starlink.ac.uk/cgi-bin/htxserver/sun33.htx/sun33.html?xref_
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FK5 coordinates; mean equinox J2000.0
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Figure 9: An example of a displayed image with a coordinate grid plotted over it.
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However, displaying an image at a precise location can be a little fiddly with some graphics
systems, and obviously the grid drawn by AST will not be accurately registered with the image
unless this is done correctly. In the following template, we therefore illustrate both steps, basing
the image display on the PGPLOT graphics packageﬂ Plotting a coordinate grid with AST then

becomes a relatively minor part of what is almost a complete graphics program.

Once again, we assume that a pointer, WCSINFO, to a suitable associated with the

image has already been obtained (§3.4).

* ¥ X ¥

* ¥ ¥ *x

DOUBLE PRECISION BBOX( 4 )

INTEGER NX, NY, PGBEG, PLOT

REAL DATA( NX, NY ), GBOX( 4 ), HI, LO, SCALE, TR( 6 )
REAL X1, X2, XLEFT, XRIGHT, Y1, Y2, YBOTTOM, YTOP

Access the image data, which we assume will be stored in the real
2-dimensional array DATA with dimension sizes NX and NY. Also
derive limits for scaling it, which we assign to the variables HI
and LO.

<this stage depends on your data system, so is not shown>

Open PGPLOT using the device given by environment variable
PGPLOT_DEV and check for success.
IF ( PGBEG( O, > ?>, 1, 1 ) .EQ. 1 ) THEN

Clear the screen and ensure equal scales on both axes.
CALL PGPAGE
CALL PGWNAD( 0.0, 1.0, 0.0, 1.0 )

Obtain the extent of the plotting area (not strictly necessary for
PGPLOT, but possibly for other graphics systems). From this, derive
the display scale in graphics units per pixel so that the image
will fit within the display area.

CALL PGQWIN( X1, X2, Y1, Y2 )

SCALE = MINC ( X2 - X1 ) / NX, (Y2 - Y1) / NY)

Calculate the extent of the area in graphics units that the image
will occupy, so as to centre it within the display area.

XLEFT = 0.5 * ( X1 + X2 - NX * SCALE )
XRIGHT 0.5 * ( X1 + X2 + NX * SCALE )
YBOTTOM = 0.5 * ( Y1 + Y2 - NY * SCALE )
YTOP = 0.5 *x ( Y1 + Y2 + NY * SCALE )

Set up a PGPLOT coordinate transformation matrix and display the
image data as a grey scale map (these details are specific to
PGPLOT) .

TR( 1 ) = XLEFT - 0.5 * SCALE
TR( 2 ) = SCALE

TR( 3 ) = 0.0

TR( 4 ) = YBOTTOM - 0.5 * SCALE

7 An interface is provided with AST that allows it to use PGPLOT (SUN/15) for its graphics, although interfaces

to other graphics systems may also be written.


http://www.starlink.ac.uk/cgi-bin/htxserver/sun15.htx/sun15.html?xref_
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TR( 5 ) = 0.0
TR( 6 ) = SCALE
CALL PGGRAY( DATA, NX, NY, 1, NX, 1, NY, HI, LO, TR )

* BEGINNING OF AST BIT
*
* Store the locations of the bottom left and top right corners of the
* region used to display the image, in graphics coordinates.
GBOX( 1 ) = XLEFT
GBOX( 2 ) = YBOTTOM
GBOX( 3 ) = XRIGHT
GBOX( 4 ) = YTOP
Similarly, store the locations of the image’s bottom left and top
right corners, in pixel coordinates -- with the first pixel centred
at (1,1).
BBOX( 1 ) = 0.5D0
BBOX( 2 ) = 0.5D0
BBOX( 3 ) = NX + 0.5D0
BBOX( 4 ) = NY + 0.5D0
* Create a Plot, based on the FrameSet associated with the
* 1image. This attaches the Plot to the graphics surface so that it
* matches the displayed image. Specify that a complete set of grid
* lines should be drawn (rather than just coordinate axes).

PLOT = AST_PLOT( WCSINFO, GBOX, BBOX, ’Grid=1’, STATUS )

Optionally, we can now set other Plot attributes to control the
appearance of the grid. The values assigned here use the
colour/font indices defined by the underlying graphics system.

CALL AST_SET( PLOT, ’Colour(grid)=2, Font(textlab)=3’, STATUS )

* Use the Plot to draw the coordinate grid.
CALL AST_GRID( PLOT, STATUS )

<maybe some more AST graphics here>
Annul the Plot when finished (or use the AST_BEGIN/AST_END
technique shown earlier).

CALL AST_ANNUL( PLOT, STATUS )

END OF AST BIT

* Close down the graphics system.
CALL PGEND
END IF

Note that once you have set up a which is aligned with a displayed image, you may also use
it to generate further graphical output of your own, specified in the image’s world coordinate
system (such as markers to represent astronomical objects, annotation, etc.). There is also a range
of Plot attributes which gives control over most aspects of the output’s appearance. For details
of the facilities available, see §1]and the description of the Plot class in Appendix D]



SUN/210.28 —How To... 30

For details of how to build a graphics program which uses PGPLOT, see and the description
of the command in Appendix

3.17 ...Switch to Plot a Different Celestial Coordinate Grid

Once you have set up a to draw a coordinate grid (§3.16), it is a simple matter to change
things so that the grid represents a different celestial coordinate system. For example, after

creating the Plot with|[AST_PLOT] you could use:

CALL AST_SET( PLOT, ’System=Galactic’, STATUS )

or:
CALL AST_SET( PLOT, ’System=FK5, Equinox=J2010’, STATUS )

and any axes and/or grid drawn subsequently would represent the new celestial coordinate
system you specified. Note, however, that this will only work if the original grid represented
celestial coordinates of some kind (see §3.8|for how to determine if this is the casd®). If it did not,
you will get an error message.

For more information about the celestial coordinate systems available, see the descriptions of
the [System] [Equinox|and [Epoch|attributes in Appendix|[C|

3.18 ...Give a User Control Over the Appearance of a Plot

The idea of using a[Ploffs attributes to control the appearance of the graphical output it produces
(§3.16/and §3.17) can easily be extended to allow the user of a program complete control over
such matters.

For instance, if the file “plot.config” contains a series of plotting options in the form of Plot
attribute assignments (see below for an example), then we could create a Plot and implement
these assignments before producing the graphical output as follows:

CHARACTER LINE( 120 )
INTEGER BASE

Create a Plot and define the default appearance of the graphical
output it will produce.
PLOT = AST_PLOT( WCSINFO, GBOX, PBOX,
: ’Grid=1, Colour(grid)=2, Font(textlab)=3’,
STATUS )

* (Obtain the value of any Plot attributes we want to preserve.
BASE = AST_GETI( PLOT, ’Base’, STATUS )

* Open the plot configuration file, if it exists.
OPEN ( 1, FILE = ’plot.config’, STATUS = ’0LD’, ERR = 8 )

8Note that the methods applied to amay be used equally well with a Plot.
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* Read each line of text and use it to set new Plot attribute
* values. Close the file when done.
6 CONTINUE

READ ( 1, ’(A)’, END = 7 ) LINE

CALL AST_SET( PLOT, LINE, STATUS )

GO TO 6

7 CLOSE ( 1)
8 CONTINUE

* Restore any attribute values we are preserving.
CALL AST_SETI( PLOT, ’Base’, BASE, STATUS )

* Produce the graphical output (e.g.).
CALL AST_GRID( PLOT, STATUS )

Notice that we take care that the Plot’s attribute is preserved so that the user cannot change
it. This is because graphical output will not be produced successfully if the base does not
describe the plotting surface to which we attached the Plot when we created it.

The arrangement shown above allows the contents of the “plot.config” file to control most
aspects of the graphical output produced (including the coordinate system used; the colour, line
style, thickness and font used for each component; the positioning of axes and tick marks; the
precision, format and positioning of labels; etc.) via assignments of the form:

System=Galactic, Equinox = 2001
Border = 1, Colour( border ) =1
Colour( grid ) = 2

DrawAxes = 1

Colour( axes ) = 3

Digits = 8

Labelling = Interior

For a more sophisticated interface, you could obviously perform pre-processing on this input—
for example, to translate words like “red”, “green” and “blue” into colour indices, to permit
comments and blank lines, efc.

For a full list of the attributes that may be used to control the appearance of graphical output, see
the description of the Plot class in Appendix[D] For a complete description of each individual
attribute (e.g. those above), see the attribute’s entry in Appendix|C]
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4 An AST Object Primer

The AST library deals throughout with entities called Objects and a basic understanding of how
to handle these is needed before you can use the library effectively. If you are already familiar
with an object-oriented language, such as C+4-+, few of the concepts should seem new to you. Be
aware, however, that AST is designed to be used via fairly conventional Fortran and C interfaces,
so some things have to be done a little differently.

If you are not already familiar with object-oriented programming, then don’t worry—we will not
emphasise this aspect more than is necessary and will not assume any background knowledge.
Instead, this section concentrates on presenting all the fundamental information you will need,
explaining how AST Objects behave and how to manipulate them from conventional Fortran
programs.

If you like to read documents from cover to cover, then you can consider this section as an
introduction to the programming techniques used in the rest of the document. Otherwise, you
may prefer to skim through it on a first reading and return to it later as reference material.

4.1 AST Objects

An AST is an entity which is used to store information and Objects come in various kinds,
called classes, according to the sort of information they hold. Throughout this section, we will
make use of a simple Object belonging to the “fZoomMap]” class to illustrate many of the basic
concepts.

A ZoomMap is an Object that contains a recipe for converting coordinates between two hypo-
thetical coordinate systems. It does this by multiplying all the coordinate values by a constant
called the factor. A ZoomMap is a very simple Object which exists mainly for use in
examples. It allows us to illustrate the ways in which Objects are manipulated and to introduce
the concept of a[Mappingf—a recipe for converting coordinates—which is fundamental to the
way the AST library works.

4.2 Object Creation and Pointers
Let us first consider how to create a This is done very simply as follows:

INCLUDE ’>AST_PAR’
INTEGER STATUS, ZOOMMAP

STATUS = 0

ZOOMMAP = AST_ZOOMMAP( 2, 5.0D0O, ’ ’, STATUS )

The first step is to include the file AST_PAR which defines the interface to the AST library and,
amongst other things, declares[AST_ZOOMMATP] to be an integer function. We then declare
an integer variable ZOOMMAP to receive the result and an integer STATUS variable to hold
the error status, which we initialise to zero. Next, we invoke AST_ZOOMMAP to create the
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ZoomMap. The pattern is the same for all other classes of AST[Objectt—you simply prefix “AST_"
to the class name to obtain the function that creates the Object.

These functions are called constructor functions, or simply constructors (you can find an individual
description of all AST functions in Appendix[B) and the arguments passed to the constructor are
used to initialise the new Object. In this case, we specify 2 as the number of coordinates (i.e. we
are going to work in a 2-dimensional space) and 5.0D0 as the factor to be applied. Note
that this is a Fortran double precision value. We will return to the final two arguments, a blank

string and the error status, shortly (§4.6|and §4.13).

The integer value returned by the constructor is termed an Object pointer or, in this case, a
ZoomMap pointer. This pointer is not an Object itself, but is a value used to refer to the Object.
You should be careful not to modify any Object pointer yourself, as this may render it invalid.
Instead, you perform all subsequent operations on the Object by passing this pointer to other
AST routines.

4.3 The Object Hierarchy

Now that we have created our first let us examine how it relates to other kinds of
[Object|before investigating what we can do with it.

We have so far indicated that a ZoomMap is a kind of Object and have also mentioned that it is a
kind of as well. These statements can be represented very simply using the following
hierarchy:

Object

Mapping
ZoomMap

which is a way of stating that a ZoomMabp is a special class of Mapping, while a Mapping, in
turn, is a special class of Object. This is exactly like saying that an Oak is a special form of Tree,
while a Tree, in turn, is a special form of Plant. This may seem almost trivial, but before you
turn to read something less dull, be assured that it is a very important idea to keep in mind in
what follows.

If we look at some of the other Objects used by the AST library, we can see how these are all
related in a similar way (don’t worry about what they do at this stage):

Object

Mapping

Frame
FrameSet
Plot

UnitMap
ZoomMap

Channel
FitsChan
XmlChan

Notice that there are several different types of Mapping available (i.e. there are classes of Object
indented beneath the “Mapping” heading) and, in addition, other types of Object which are not
Mappings—Channels for instance (which are at the same hierarchical level as Mappings).
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The most specialised Object we have shown here is the (which we will not discuss in detail

until §21)). As you can see, a Plotis a .. and a[Frame] .. and a Mapping. .. and, like

everything else, ultimately an Object.

What this means is that you can use a Plot not only for its own specialised behaviour, but also
whenever any of these other less-specialised classes of Object is called for. The general rule is
that an Object of a particular class may substitute for any of the classes appearing above it in
this hierarchy. The Object is then said to inherit the behaviour of these higher classes. We can
therefore use our ZoomMap whenever a ZoomMap, a Mapping or an Object is called for.

Sometimes, this can lead to some spectacular short-cuts by avoiding the need to break large
Objects down in order to access their components. With some practice and a little lateral thinking
you should soon be able to spot opportunities for this.

You can find the full class hierarchy, as this is called, for the AST library in Appendix|Aland you
may need to refer to it occasionally until you are familiar with the classes you need to use.

4.4 Displaying Objects

Let us now return to the[ZoomMap|that we created earlier (§4.2) and examine what it’s made of.
There is a routine for doing this, called ]AST_SHOW| which is provided mainly for looking at
Objects while you are debugging programs.

If you consult the description of AST_SHOW in Appendix B} you will find that it takes a pointer
to an[Object]as its argument (in addition to the usual STATUS argument). Although we have
only a ZoomMap pointer available, fortunately this is not a problem. If you refer to the brief class
hierarchy described above (§4.3), you will see that a ZoomMap is an Object, albeit a specialised
one, so it inherits the properties of all Objects and can be substituted wherever an Object is
required. We can therefore pass our ZoomMap pointer directly to AST_SHOW, as follows:

CALL AST_SHOW( ZOOMMAP, STATUS )

The output from this will appear on the standard output stream and should look like the
following;:

Begin ZoomMap
Nin = 2

IsA Mapping
Zoom = 5

End ZoomMap

Here, the “Begin” and “End” lines mark the beginning and end of the ZoomMap, while the
values 2 and 5 are simply the values we supplied to initialise it (§4.2). These have been given
simple names to make them easy to refer to.

The line in the middle which says “IsA Mapping]” is a dividing line between the two values.
It indicates that the “INin|” value is a property shared by all Mappings, so the ZoomMap has
inherited this from its parent class (Mapping). The “Zoom|” value, however, is specific to a
ZoomMap and isn’t shared by other kinds of Mappings.
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4.5 Getting Attribute Values

We saw above (§4.4) how to display the internal values of an but what about accessing
these values from a program? Not all internal Object values are accessible in this way, but many
are. Those that are, are called attributes. A description of all the attributes used by the AST
library can be found in Appendix|C]

Attributes come in several data types (character string, integer, boolean and floating point) and
there is a standard way of obtaining their values. As an example, consider obtaining the value

of the attribute for the created earlier. This could be done as follows:

INTEGER NIN

NIN = AST_GETI( ZOOMMAP, ’Nin’, STATUS )

Here, the integer function AST_GETI is used to extract the attribute value by giving it the
ZoomMap pointer and the attribute name (attribute names are not case sensitive, but we have
used consistent capitalisation in this document in order to identify them). Remember to use the
AST_PAR include file to save having to declare AST_GETI as integer yourself.

If we had wanted the value of the attribute, we would probably have used AST_GETD
instead, this being a double precision version of the same function, for example:

DOUBLE PRECISION ZOOM

Z0OM = AST_GETD( ZOOMMAP, ’Zoom’, STATUS )

However, we could equally well have read the Nin value as double precision, or the Zoom value
as an integer, or whatever we wanted.

The data type you want returned is specified simply by replacing the final character of the
AST_GETx function name with C (character), D (double precision), I (integer), L (logical) or
R (real). If possible, the value is converted to the type you want. If not, an error message will
result. In converting from integer to logical, zero is regarded as .FALSE. and non-zero as .TRUE..
Note that all floating point values are stored internally as double precision. Boolean values are
stored as integers, but only take the values 1 and 0 (for true/false).

4.6 Setting Attribute Values

Some attribute values are read-only and cannot be altered after an[Object| has been created. The

attribute of a (describing the number of coordinates) is like this. It is defined
when the ZoomMap is created, but cannot then be altered.

Other attributes, however, can be modified whenever you want. A ZoomMap’s attribute
is like this. If we wanted to change it, this could be done simply as follows:

CALL AST_SETD( ZOOMMAP, ’Zoom’, 99.6D0O, STATUS )
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which sets the value to 99.6 (double precision). As when getting an attribute value (§4.5), you
have a choice of which data type you will use to supply the new value. For instance, you could
use an integer value, as in:

CALL AST_SETI( ZOOMMAP, ’Zoom’, 99, STATUS )

and the necessary data conversion would occur. You specify the data type you want to supply
simply by replacing the final character of the AST_SETx routine name with C (character),
D (double precision), I (integer), L (logical) or R (real). Setting a boolean attribute to any
non-zero integer causes it to take the value 1.

An alternative way of setting attribute values for Objects is to use the routine (i.e.
with no final character specifying a data type). In this case, you supply the attribute values in
a character string. The big advantage of this method is that you can assign values to several
attributes at once, separating them with commas. This also reads more naturally in programs.
For example:

CALL AST_SET( ZOOMMAP, ’Zoom=99.6, Report=1’, STATUS )

would set values for both the Zoom attribute and the attribute (about which more
shortly—§4.8). You don't really have to worry about data types with this method, as any
character representation will do (although you must use 0/1 instead of .TRUE./.FALSE., which
are not supported). Note, when using AST_SET, a literal comma may be included in an attribute
value by enclosed the value in quotation marks:

CALL AST_SET( SKYFRAME, ’SkyRef="12:13:32,-23:12:44">, STATUS )

Finally, a very convenient way of setting attribute values is to do so at the same time as you
create an Object. Every Object constructor function has a penultimate character argument which
allows you to do this. Although you can simply leave this blank, it is an ideal opportunity to
initialise the Object to have just the attributes you want. For example, we might have created
our original ZoomMap with:

ZOOMMAP = AST_ZOOMMAP( 2, 5.0DO, ’Report=1’, STATUS )

and it would then start life with its Report attribute set to 1.

4.7 Testing, Clearing and Defaulting Attributes

You can use the AST_GETx family of routines (§4.5) to get a value for any [Object|attribute at any
time, regardless of whether a value has previously been set for it. If no value has been set, the
AST library will generate a suitable default value.

Often, the default value of an attribute will not simply be trivial (zero or blank) but may involve
considerable processing to calculate. Wherever possible, defaults are designed to be real-life,
sensible values that convey information about the state of the Object. In particular, they may
often be based on the values of other attributes, so their values may change in response to
changes in these other attributes. The class that we have studied so far is a little too
simple to show this behaviour, but we will meet it later on.
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An attribute that returns a default value in this way is said to be un-set. Conversely, once an
explicit value has been assigned to an attribute, it becomes set and will always return precisely
that value, never a default.

The distinction between set and un-set attributes is important and affects the behaviour of
several key routines in the AST library. You can test if an attribute is set using the logical

function|AST TEST] as in:

IF ( AST_TEST( ZOOMMAP, ’Report’, STATUS ) ) THEN
<the Report attribute is set>
END IF

(as usual, remember to include the AST_PAR file to declare the function as LOGICAL, or make
this declaration yourself).

Once an attribute is set, you can return it to its un-set state using|AST_CLEAR! The effect is as if
it had never been set in the first place. For example:

CALL AST_CLEAR( ZOOMMAP, ’Report’, STATUS )

would ensure that the default value of the attribute is used subsequently.

4.8 Transforming Coordinates

We now have the necessary apparatus to start using our[ZoomMap] to show what it is really for.
Here, we will also encounter a routine that is a little more fussy about the type of pointer it will
accept.

The purpose of a ZoomMap is to multiply coordinates by a constant zoom factor. To witness
this in action, we will first set the attribute for our ZoomMap to a non-zero value:

CALL AST_SET( ZOOMMAP, ’Report=1’, STATUS )

This boolean (integer) attribute, which is present in all Mappings (and a ZoomMap is aMapping),
causes the automatic display of all coordinate values that the Mapping converts. It is not a good
idea to leave this feature turned on in a finished program, but it can save a lot of work during
debugging.

Our next step is to set up some coordinates for the ZoomMap to work on, using two arrays XIN

and YIN, and two arrays to receive the transformed coordinates, XOUT and YOUT. Note that
these arrays are double precision, as are all coordinate data processed by the AST library:

DOUBLE PRECISION XIN( 10 ), YIN(C 10 ), XOUT( 10 ), YOUT( 10 )
DATA XIN / ODO, 1DO, 2DO, 3DO, 4D0O, 5D0O, 6DO, 7DO, 8DO, 9DO /
DATA YIN / ODO, 2DO, 4DO, 6DO, 8D0O, 10DO, 12DO, 14DO, 16DO, 18DO /

We will now use the routine to transform the input coordinates. This is the most
commonly-used (2-dimensional) coordinate transformation routine. If you look at its description
in Appendix B} you will see that it requires a pointer to a Mapping, so we cannot supply just
any old [Object| pointer, as we could with the routines discussed previously. If we passed it a
pointer to an inappropriate Object, an error message would result.

Fortunately, a ZoomMap is a Mapping (Appendix[A), so we can use it with AST_TRAN?2 to
transform our coordinates, as follows:
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CALL AST_TRAN2( ZOOMMAP, 10, XIN, YIN, .TRUE., XOUT, YOUT, STATUS )

Here, 10 is the number of points we want to transform and the fifth argument value of . TRUE.
indicates that we want to transform in the forward direction (from input to output).

Because our ZoomMap’s Report attribute is set to 1, this will cause the effects of the ZoomMap
on the coordinates to be displayed on the standard output stream:

(0, 0) --> (0, 0)

(1, 2) --> (5, 10)

(2, 4) --> (10, 20)
(3, 6) --> (15, 30)
(4, 8) --> (20, 40)
(5, 10) --> (25, 50)
(6, 12) --> (30, 60)
(7, 14) --> (35, 70)
(8, 16) --> (40, 80)
(9, 18) --> (45, 90)

This shows the coordinate values of each point both before and after the ZoomMap is applied.
You can see that each coordinate value has been multiplied by the factor 5 determined by the
[Zoom attribute value. The transformed coordinates are now stored in the XOUT and YOUT
arrays.

If we wanted to transform in the opposite direction, we need simply change the fifth argument
of AST_TRAN2 from .TRUE. to .FALSE.. We can also feed the output coordinates from the above
back into the routine:

CALL AST_TRAN2( ZOOMMAP, 10, XOUT, YOUT, .FALSE., XIN, YIN, STATUS )
The output would then look like:

(0, 0) --> (0, 0)

(5, 100 --> (1, 2)

(10, 20) --> (2, 4
(15, 30) --> (3, 6)
(20, 40) --> (4, 8)
(26, 50) --> (5, 10)
(30, 60) --> (6, 12)
(35, 70) --> (7, 14)
(40, 80) --> (8, 16)
(45, 90) --> (9, 18)

This is termed the inverse transformation (we have converted from output to input) and you can
see that the original coordinates have been recovered by dividing by the Zoom factor.

4.9 Managing Object Pointers

So far, we have looked at creating Objects and using them in various simple ways but have not
yet considered how to get rid of them again.
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Every consumes various computer resources (principally memory) and should be dis-
posed of when it is no longer required, so as to free up these resources. One way of doing this
(not necessarily the best—§4.10) is to annul each Object pointer once you have finished with it,

using |AST_ANNUL] For example:

CALL AST_ANNUL( ZOOMMAP, STATUS )

This indicates that you have finished with the pointer and sets it to the null value AST__NULL
(as defined in the AST_PAR include file), so that any attempt to use it again will generate an
error message.

In general, this process may not delete the Object, because there may still be other pointers
associated with it. However, each Object maintains a count of the number of pointers associated
with it and will be deleted if you annul the final pointer. Using AST_ANNUL consistently will
therefore ensure that all Objects are disposed of at the correct time. You can determine how
many pointers are associated with an Object by examining its (read-only) attribute.

4.10 AST Pointer Contexts—Begin and End

The use of[AST_ANNUT] (§4.9) is not completely foolproof, however. Consider the following:

CALL AST_SHOW( AST_ZOOMMAP( 2, 5.0D0, ’> ’, STATUS ), STATUS )

This creates a and displays it on standard output (§4.4). Using function invocations
as arguments to other routines in this way is very convenient because it avoids the need for
intermediate pointer variables. However, the pointer generated by [AST_ZOOMMAPis still
active, and since we have not stored its value, we cannot use AST_ANNUL to annul it. The
ZoomMap will therefore stay around until the end of the program.

A simple way to avoid this problem is to enclose all use of AST routines between calls to

AST_BEGIN|and [AST_END] for example:

CALL AST_BEGIN( STATUS )
CALL AST_SHOW( AST_ZOOMMAP( 2, 5.0D0, ’> °, STATUS ), STATUS )
CALL AST_END( STATUS )

When the AST_END call executes, every pointer created since the previous AST_BEGIN
call is automatically annulled and any Objects left without pointers are deleted. This provides a
simple solution to managing Objects and their pointers, and allows you to create Objects very
freely without needing to keep detailed track of each one. Because this is so convenient, we
implicitly assume that AST_BEGIN and AST_END are used in most of the examples given in
this document. Pointer management is not generally shown explicitly unless it is particularly
relevant to the point being illustrated.

If necessary, calls to AST_BEGIN and AST_END may be nested, like [IF| .. ENDIF blocks in
Fortran, to define a series of AST pointer contexts. Each call to AST_END will then annul only
those Object pointers cre