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Abstract

Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function
of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that
implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein,
as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al.. These impurity
solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of
dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems
with arbitrary densities of states.
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1. Introduction: Quantum impurity models
and impurity solvers

Quantum impurity models appear in a variety of
contexts and play an important role in the study of
correlated electron systems. The impurity model
may either represent a nano-structure such as a
quantum dot or adatom on a surface, or it may
serve as an auxiliary problem whose solution yield
the “dynamical mean field” (DMFT) [2, 3] descrip-
tion of correlated lattice models. Powerful impurity
solvers are in particular required for recently devel-
oped extensions of DMFT [4, 5] and for the study
realistic materials [6].

Quantum impurity models are amenable to nu-
merical study, and numerous solution techniques
exist, among them approximate semi-analytical
[7, 8, 9], renormalization group [10], and quan-
tum Monte Carlo methods. The Hirsch-Fye [11]
quantum Monte Carlo method, long the method
of choice for controlled quantitative studies, has
one important disadvantage: it suffers from a Trot-
ter breakup (‘∆τ ’) error that, in practice, needs
to be controlled by means of extrapolation pro-
cedures. Continuous-time methods, originally de-
veloped by Rubtsov et al. [12, 13] and Werner
et al. [14], and later extended by various authors
[15, 16, 17, 18, 19], are based on partition function
expansions that are stochastically sampled to all
orders using diagrammatic quantum Monte Carlo
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techniques [20, 21], thereby avoiding such errors.
These methods are orders of magnitude more ef-
ficient than Hirsch Fye [22] and have rapidly be-
come the methods of choice for the simulation of
quantum impurity models, in particular in the con-
text of the DMFT, where the possibility of treat-
ing more complicated interactions (in particular the
full multiplet structure of multi-orbital systems [15]
and retardation effects [23, 24]) has allowed access
to important new physics. Recent applications in-
clude simulations of model systems, realistic mate-
rial simulations, as well as “dual Fermion”[5] and
cluster extensions [25, 26, 27].

With this paper we provide implementations
of continuous-time methods and a DMFT self-
consistency framework, with the intention of en-
abling the reader to develop his own codes based on
these programs, as well as supplying the community
with state-of-the-art implementations for dynami-
cal mean-field calculations. The implementations
are based on version 2.0 of the open source ALPS
library [1] available at http://alps.comp-phys.org.

In the remainder of this paper we review quan-
tum impurity models (Sec. 2) and continuous-time
algorithms (Sec. 3 and 4), present the DMFT
self-consistency conditions 5, and guide the reader
through some of our examples (Sec. 6).

2. Continuous-Time Quantum Monte Carlo
Impurity Solvers

A quantum impurity model represents an atom
or molecule (the ‘impurity’) embedded in some host
material (the ‘bath’ or ‘leads’) and can be described
by a Hamiltonian

H = Himp +Hbath +Hmix. (1)

Here, Himp = H0
imp+HI

imp corresponds to the impu-
rity (finite number of degrees of freedom, creation
operators d†α) with non-interacting and interacting
parts

H0
imp =

∑

αβ

εαβd
†
αdβ , (2)

HI
imp =

∑

αβγδ

Uαβγδd
†
αd
†
βdγdδ, (3)

while Hbath represents a non-interacting bath (infi-
nite number of degrees of freedom, creation opera-
tors a†ν)

Hbath =
∑

ν

ενa
†
νaν , (4)

and Hmix the exchange of electrons between the im-
purity and the bath (hybridization amplitude V ),

Hmix =
∑

να

V αν a
†
νdα +H.c.. (5)

Continuous-time Quantum Monte Carlo impurity
solvers allow the accurate and efficient simula-
tion of impurity models. The methods are based
on an expansion of the partition function Z =
Tr[e−βH ] into a series of diagrams and the stochas-
tic sampling of (collections of) these diagrams. In
the interaction expansion [12, 13], the Hamilto-
nian Eq. (1) is split into a non-interacting part
H1 = H0

imp +Hbath +Hmix and an interacting part

H2 = H − H1 = HI
imp, while for the hybridiza-

tion expansion [14, 15], the Hamiltonian is split
into the local part H1 = Himp + Hbath and the
hybridization part H2 = H − H1 = Hmix. In ei-
ther case, one then employs the interaction repre-
sentation in which the time evolution of operators
is given by H1: O(τ) = eτH1Oe−τH1 . Using the
imaginary-time-ordering operator Tτ the partition
function can be expressed as a time-ordered expo-
nential, which is then expanded into powers of H2,

Z = Tr
[
e−βH1Tτe−

∫ β
0

dτH2(τ)
]

=

∞∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτnTr
[
e−(β−τn)H1(−H2) . . .

. . . e−(τ2−τ1)H1(−H2)e−τ1H1

]
. (6)

Eq. (6) represents the partition function as a
sum over all configurations c = {τ1 < . . . < τn},
n = 0, 1, . . ., τi ∈ [0, β) with weight wc =
Tr[e−(β−τn)H1(−H2) . . . e−(τ2−τ1)H1(−H2)e−τ1H1 ]dτn

and these configurations are sampled by a Monte
Carlo procedure.

In the following two sections we will describe the
interaction and hybridization expansion algorithms
in some more detail for the simple case of the single-
orbital Anderson Impurity model (AIM) for which
(σ denotes spin, nσ = d†σdσ) Himp = −µ(n↑+n↓)+
U(n↑n↓).

3. Interaction expansion impurity solver
CT-INT

The continuous-time impurity solver based on the
weak-coupling expansion has been proposed in [13,
12]. For the single-orbital AIM, the Monte Carlo
configurations c = {τ1 < . . . < τn} correspond to
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collections of interaction vertices placed at positions
τi on the imaginary time interval. The weight of
such a configuration is given by

wc = (−Udτ)n detM, (7)

where M is an n × n matrix with elements Mij =
G0(τi − τj), and G0(τ) (or its Fourier transform
G0(iωn)) is the “bath Green’s function” defined in
terms of the bath energy levels εν and hybridization
amplitudes Vν as [2]

G0(iωn) = [iωn + µ−∆(iωn)]−1, (8)

∆(iωn) =
∑

ν

|Vν |2
iωn − εν

. (9)

In the case of repulsive interactions the chemical
potentials for spin up and down must be shifted to
avoid a trivial sign problem arising from the factor
(−U)n [13].

4. Hybridization expansion impurity solver
CT-HYB

The continuous-time impurity solver based on the
hybridization expansion was developed in [14, 15].
After the expansion of the partition function in
powers of H2 = Hmix, the time evolution (given by
H1) no longer couples the impurity and the bath.
One can thus integrate out the bath degrees of free-
dom analytically to obtain

wc̃ =ZbathTrimp

[
e−βHimpTτd

†
α′n

(τ ′n)dαn(τn) . . .

d†α′1
(τ ′1)dα1(τ1)

]
× detM

(
{τ1, α1}, . . . , {τn, αn};

{τ ′1, α′1}, . . . , {τ ′n, α′n}
)

(dτ)2n. (10)

A configuration c̃ corresponding to perturbation or-
der 2n thus is a collection of n time arguments
τ1 < . . . < τn corresponding to annihilation opera-
tors with spin indices α1, . . . , αn and n time argu-
ments τ ′1 < . . . < τ ′n corresponding to creation op-
erators with spin indices α′1, . . . , α

′
n. The element

i, j of the matrix M is given by the hybridization
function ∆(τ ′i − τj) [15].

Up to the irrelevant constant Zbath the weights
consist of two factors: Trimp[. . .] evaluates the
imaginary-time evolution of the quantum impurity
for a given sequence of hybridization events, while
detM gives the contribution of the bath degrees of
freedom which have been integrated out. In the
general case the computation of the trace factor

G0 −→ Impurity Solver −→ G

↑ ↓

G−1
0 = Ḡ−1 +Σ Σ = G−1

0 −G−1

տ ւ

Ḡ =

∞∫

−∞

dǫ
D(ǫ)

iωn + µ− ǫ− Σ

Figure 1: The DMFT self-consistency loop. The dependence
of Σ and all Green’s functions on the Matsubara frequency
iωn is omitted for simplicity

will lead to an exponential scaling of the algorithm
with number of orbitals. In the AIM and its multi-
orbital generalizations with density-density interac-
tions, however, the occupation number basis is an
eigenbasis of Himp and thus the very efficient seg-
ment formulation [14] may be used.

5. Dynamical mean-field theory

The dynamical mean-field theory (DMFT) [2, 3,
6] was originally motivated by the observation that
the diagrammatics of systems in the infinite coordi-
nation number limit simplifies dramatically [28, 29].
Following this observation several authors (see [2, 3]
for a detailed account of the history) showed that if
the momentum dependence of the self-energy may
be neglected, Σ(k, ω) ≈ Σ(ω), as is the case in the
infinite coordination limit, the solution of a quan-
tum many body system may be obtained as the
solution of a quantum impurity model (Eq. (1))
subject to an appropriately defined self-consistency
condition. While this approximation is a priori un-
controlled, dynamical mean-field theory becomes
exact in the atomic and noninteracting limits as
well as for infinite coordination number, and exten-
sions to DMFT [4] reintroduce momentum depen-
dence systematically, thereby rendering it a con-
trolled approximation with a small parameter [30].

The DMFT self-consistency cycle starts with
an initial guess for the hybridization function ∆
(Eq. (9)) or bath Green’s function G0 (Eq. (8)),
which determines the initial “bath” for the quan-
tum impurity model Eq. (1). Using one of the
quantum impurity solvers described in Sec. 3 or
Sec. 4 the imaginary-time Green’s function G(τ) =
−〈Tτd(τ)d†(0)〉 or its Fourier transform G(iωn) and
the Matsubara self-energy Σ(iωn) = G−10 −G−1 are
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computed. This part of the calculation is compu-
tationally the most expensive part.

The self-consistency cycle is closed using a so-
called Hilbert transform, which for single-impurity
single-orbital DMFT calculations is best written as
an integral over the density of states D(ε) of the
lattice under consideration: using the (momentum-
independent impurity) self-energy a momentum-
averaged lattice Green’s function is computed as

Ḡ(iωn) =

∞∫

−∞

dε
D(ε)

iωn + µ− ε− Σ(iωn)
(11)

which, using Dyson’s equation Σ = G−10 − G−1,
provides a new bath Green’s function G0 for the
next iteration.

Deep within a phase convergence is stable and
usually achieved in less than 10 self-consistency
steps. Close to phase transition the convergence
may take much longer. In Fig. 1 we illustrate
this self-consistency cycle. For the special case of
the Bethe lattice [31] in infinite dimensions, with
a semi-circular density of states D(ε), the Hilbert
transform simplifies dramatically to

G0(iωn) = iωn + µ− t2G(iωn) . (12)

Similar relations exist for other dispersion relations.

6. Codes and Examples

The main part of this work are the algorithm im-
plementations which are available from the online
repository as well as on the ALPS project home-
page http://alps.comp-phys.org. The implementa-
tions are written in C++ and rely heavily on the open
source ALPS Monte Carlo library [1], in particular
on the “alea”[32] and “scheduler” [33] parts.

We present here two examples that illustrate the
power of these methods and show how they may
be used in practice. Further examples and tutori-
als are available online. First we show the exam-
ple of a paramagnetic metal being cooled below the
Néel temperature TN and developing antiferromag-
netic correlations – an example taken from Fig. 11
of Ref. [2]. Secondly we illustrate the lack of dis-
cretization errors in continuous-time algorithms by
comparing self-energy data to Fig. 15 in the same
publication (see also Fig. 4 in Ref. [17]). Both ex-
amples are available as tutorials in the ALPS pack-
age available at http://alps.comp-phys.org, along
with detailed instructions on how to install pro-
grams and libraries and how to run the simulations.
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Figure 2: (Color online) Green’s functions G↑ (solid line)

and G↓ (dashed line) in the temperature range βD/
√

2 =
6, 8, ..., 16 (from bright to dark lines) for the half-filled Hub-
bard model simulated using the CT-HYB impurity solver
and a DMFT self-consistency allowing for antiferromagnetic
order.

6.1. Néel transition in single site DMFT

We study a single-orbital Hubbard model at an
interaction strength U/D = 3/

√
2 within the tem-

perature range βD/
√

2 = 6, 8, ..., 16, where D is
the half-width of a semi-circular density of states.
Because of the simple structure of the Hilbert trans-
form Eq. (12) and the exact limit of infinite coor-
dination number such examples are frequently used
to test the dynamical mean-field theory and bench-
mark algorithms. We measure the imaginary-time
Green’s function Gσ(τ) = −〈Tτ cσ(τ)cσ(0)†〉 and
show results for spin σ =↑ and σ =↓ in Fig. 2.
The value −G(τ = β) corresponds to the expec-
tation value of the occupation number nσ. For
βD/
√

2 = 6 the system is in a paramagnetic phase
and hence n↑ = n↓ = 1/2. Upon reducing temper-
ature (βD/

√
2 = 8, ..., 16) the occupation numbers

for ‘up’ and ‘down’ spins n↑, n↓ start to deviate as
the system enters the antiferromagnetic phase. For
βD/
√

2 = 16 a self-consistent solution is reached
within 10 iterations, typical runtimes on current
computers are on the order of two minutes. In
the ALPS package we provide a python script to
run the example presented, which can be found in
the tutorial DMFT-02 CT-HYB. The simulation is
started by running vispython tutorial2a.py in
a terminal.
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Figure 3: (Color online) Self-energy for the paramagnetic
dynamical mean-field solution of the half-filled Hubbard
model with interaction strength U/t = 4.24, at inverse tem-
perature β = 22.64/t. Data reproduced from Fig. 15 of
Ref. [2] (ED, HF) and from Fig. 4 of Ref. [17] (CT-AUX).
Shown are Hirsch Fye data with discretization (“Trotter”)
errors for different values of ∆τ , as well as accurate exact
diagonalization ([34]) data converged in the number of bath
sites and data from the numerically exact algorithms CT-
HYB, CT-AUX and CT-INT. The continuous-time and ED
data are indistinguishable.

6.2. Paramagnetic metal and extrapolation errors

To illustrate one of the main advantages of
continuous-time algorithms, the absence of dis-
cretization errors, we show results for the self-
energy of a weakly interacting paramagnetic metal
at low temperature in Fig. 3. This is a regime of
parameter space that is well described by Fermi liq-
uid theory. Unlike in the Hirsch-Fye algorithm,
discretization errors are not present and the re-
sults are very well consistent with results from
e. g. exact diagonalization (see Ref. [2], Fig. 15),
which may be considered to be exact for this
problem. Fig. 3 can be generated by execut-
ing vispython tutorial6a.py for CT-HYB and
vispython tutorial6b.py for CT-INT of ‘Tuto-
rial DMFT-06 Paramagnet’ and plotting the self
energy files of the last DMFT-iterations.

We would like to direct the reader’s attention to
further examples and tutorials on the ALPS Project
website [1].
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