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GraphBLAS: faster and more general sparse
matrices for MATLAB

GraphBLAS isnot only useful for creating graph algorithms; it a so supports awide range of sparse matrix
data types and operations. MATLAB can compute C=A*B with just two semirings: 'plus.times.double
and "plus.times.complex’ for complex matrices. GraphBLAS has 1,040 unique built-in semirings, such as
'max.plus’ (https://en.wikipedia.org/wiki/Tropical_semiring). These semirings can be used to construct a
wide variety of graph algorithms, based on operations on sparse adjacency matrices.

GraphBLAS supports sparse double and single precision matrices, logical, and sparse integer matrices:
int8, int16, int32, int64, uint8, uint16, uint32, and uint64. Complex matrices will be added in the future.

clear all
format conpact
rng ('default') ;

X =100 * rand (2) ;
G = gb (X % G aphBLAS copy of a matrix X, sanme type
G =

2x2 GraphBLAS double matrix, standard CSC, 4 entries
(1,1) 81. 4724
(2,1) 90. 5792

(1,2) 12. 6987
(2,2) 91. 3376

Sparse integer matrices

Here's an int8 version of the same matrix:

S=int8 (Q % convert Gto a full MATLAB int8 matrix
G=gb (X 'int8") % a G aphBLAS sparse int8 matrix
S =
2x2 int8 matrix
81 12
90 91
G =

2x2 GraphBLAS int8 t matrix, standard CSC, 4 entries

(1,1) 81
(2,1) 90
(1,2) 12
(2,2) 91
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Sparse single-precision matrices

Matrix operationsin GraphBLAS are typically asfast, or faster than MATLAB. Here's an unfair compar-
ison: computing X2 with MATLAB in double precision and with GraphBLAS in single precision. You
would naturally expect GraphBLAS to be faster.

Please wait ...

le5 ;
spdi ags (rand (n, 201), -100:100, n, n) ;
gb (X, '"single") ;

o a1

ti
xR =062 ;
gb_time =toc ;
tic
X2 = Xr2
matlab time = toc ;
fprintf ("\nGaphBLAS tinme: % sec (in single)\n', gb_tinme) ;
fprintf (' MATLAB tine: %y sec (in double)\n', matlab_tinme) ;
fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',

matlab tinme / gb_time) ;

G aphBLAS time: 1.55196 sec (in single)
MATLAB ti me: 5.72505 sec (in double)
Speedup of G aphBLAS over MATLAB: 3.68891

Mixing MATLAB and GraphBLAS matrices

The error in the last computation is about eps('single’) since GraphBLAS did its computation in single
precision, while MATLAB used double precision. MATLAB and GraphBLAS matrices can be easily
combined, asin X2-G2. The sparse single precision matrices take |ess memory space.

err = norm (X2 - &, 1) / norm (X2,1)
eps ('single")
whos G & X X2

err =
1. 5049e- 07

ans =
single
1.1921e- 07
Nane Size Bytes d ass Attributes
G 100000x100000 241879772 gb
(€] 100000x100000 481518572 gb
X 100000x100000 322238408 doubl e spar se
X2 100000x100000 641756808 doubl e spar se

Faster matrix operations

But even with standard double precision sparse matrices, GraphBLAS is typically faster than the built-in
MATLAB methods. Here's afair comparison:
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G=gb (X
tic
& =62 ;

gb_time =toc ;

err = norm (X2 - &, 1) / norm (X2,1)

fprintf ('\nG aphBLAS tine: % sec (in double)\n', gb_tine)

fprintf (' MATLAB tine: % sec (in double)\n', matlab_tine)

fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',
matlab_time / gb_tinme)

GraphBLAS tine: 1.62044 sec (in double)
MATLAB ti me: 5.72505 sec (in double)
Speedup of G aphBLAS over MATLAB: 3.53302

A wide range of semirings

MATLAB can only compute C=A*B using the standard '+.* .doubl €' and '+.* .complex' semirings. A semi-
ring is defined in terms of a string, 'add.mult.type', where ‘add’ is a monoid that takes the place of the
additive operator, 'mult' is the multiplicative operator, and 'type' is the data type for the two inputs to the
mult operator (the type defaultsto the type of A for C=A*B).

In the standard semiring, C=A*B is defined as:

Cli,j) =sum(A(i,:)." .* B(:,j))

using 'plus’ as the monoid and 'times' as the multiplicative operator. But in amore general semiring, 'sum'
can be any monoid, which is an associative and commutative operator that has an identity value. For
example, in the 'max.plus' tropical algebra, C(i,j) for C=A*B is defined as:

Cli,j) = max (A(i,:)." + B(:,]))

This can be computed in GraphBLAS with:

C = gbh.nxm (' mex. +', A, B)
n=3,;
A =rand (n) ;
B =rand (n) ;
C = zeros (n) ;
for i = 1:n
for j = 1:n
Ci,j) =mx (A(i,:1)." +B(:,]))
end
end

C2 = gb.mxm ('max.+, A B) ;
fprintf ("\nerr = norm(C-C2,1) = %\n', norm(CQC2,1)) ;

err = norm(CC2,1) =0
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The max.plus tropical semiring

Here are details of the "max.plus’ tropical semiring. The identity valueis -inf since max(x,-inf) = max (-
inf,x) = -inf for any x.

gb.semringinfo (' max.+. double') ;

GraphBLAS Semiring: nax.+.double (built-in)
GraphBLAS Monoi d: seniring->add (built-in)

GraphBLAS Bi naryQp: nonoid->op (built-in) z=max(Xx,y)
GraphBLAS type: ztype double size: 8

GraphBLAS type: xtype double size: 8

GraphBLAS type: ytype double size: 8

identity: [ -inf ] termnal: [ inf ]

GraphBLAS BinaryQp: semiring->multiply (built-in) z=plus(x,y)
GraphBLAS type: ztype double size: 8
GraphBLAS type: xtype double size: 8
GraphBLAS type: ytype double size: 8

A boolean semiring

MATLAB cannot multiply two logical matrices. MATLAB R2019a converts them to double and uses
the conventional +.*.double semiring instead. In GraphBLAS, thisisthe common Boolean 'or.and.logical’
semiring, which iswidely used in linear algebraic graph agorithms.

gb.semringinfo ('|.& logical") ;

GraphBLAS Semiring: |.& logical (built-in)
GraphBLAS Monoi d: seniring->add (built-in)
GraphBLAS Bi naryQp: nonoi d->op (built-in) z=or(x,y)
GraphBLAS type: ztype bool size: 1

GraphBLAS type: xtype bool size: 1

GraphBLAS type: ytype bool size: 1

identity: [ 0] termnal: | 1]

GraphBLAS BinaryQp: semring->multiply (built-in) z=and(x,y)
GraphBLAS type: ztype bool size: 1
GraphBLAS type: xtype bool size: 1
GraphBLAS type: ytype bool size: 1

cl ear
A = sparse (rand (3) > 0.5)
B = sparse (rand (3) > 0.2)
A =
3x3 sparse | ogical array

(2,1) 1

(2,2) 1

(3,2) 1

(1, 3) 1
B =
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3x3 sparse | ogical array
(1,1) 1

(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3.3)

PR RPRRPRRRER

try
% MATLAB R2019a does this by casting A and B to double

Cl = A*B

catch
% MATLAB R2018a throws an error
fprintf (' MATLAB R2019a required for CCA*B with logical\n")
fprintf ("matrices. Explicitly converting to double:\n')
Cl = double (A) * double (B)

end

C2 =gb (A * gb (B)

C1 =
(1, 1)
(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3,3)

PNRPRPNRPRRNER

Cc =
3x3 G aphBLAS bool matrix, standard CSC, 9 entries

(1, 1)
(2,1)
(3,1)
(1,2)
(2,2)
(3,2)
(1,3)
(2,3)
(3,3)

RPRRPRRPRPRPRRRER

Note that C1 isa MATLAB sparse double matrix, and contains non-binary values. C2 is a GraphBLAS
logical matrix.

whos
gb.type (C2)

Nane Si ze Bytes d ass Attributes
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A 3x3 68 | ogical spar se
B 3x3 113 | ogi cal spar se
c1 3x3 176 double spar se
c2 3x3 1079 gb
ans =
"l ogi cal’

GraphBLAS operators, monoids, and semi-
rings

The C interface for SuiteSparse:GraphBLAS allows for arbitrary types and operators to be constructed.
However, the MATLAB interface to SuiteSparse:GraphBLAS isrestricted to pre-defined types and oper-
ators. a mere 11 types, 66 unary operators, 275 binary operators, 44 monoids, 16 select operators, and
1,865 semirings (1,040 of which are unique, since some binary operators are equivalent: 'min.logical’ and
'&.logical' are the same thing, for example). The complex type and its binary operators, monoids, and

semirings will be added in the near future.
That gives you alot of toolsto create all kinds of interesting graph algorithms. For example:

gb. bf s % breadt h-first search

gb. dnn % sparse deep neural network (http://graphchall enge. org)

gbh.nis % maxi mal i ndependent set

See 'help gh.binopinfo' for alist of the binary operators, and 'help gb.monoidinfo’ for the ones that can be

used as the additive monoid in a semiring.
hel p gb. bi nopi nfo
GB.BINOPINFO |ist the details of a G aphBLAS binary operator
Usage
gb. bi nopi nfo
gb. bi nopi nfo (op)
gb. bi nopi nfo (op, type)

For gb. bi nopi nfo(op), the op nmust be a string of the form

"op.type', where 'op' is listed below. The second usage allows the
type to be omtted fromthe first argument, as just 'op'. This is
valid for all G aphBLAS operations, since the type defaults to the
type of the input matrices. However, gb.binopinfo does not have a

default type and thus one must be provided, either in the op as

gb. bi nopi nfo (' +.double"), or in the second argunent, gb.binopinfo

("+', 'double').

The MATLAB interface to G aphBLAS provides for 25 different binary

operators, each of which nmay be used with any of the 11 types,

a total of 25*11 = 275 valid binary operators. Binary operators

are defined by a string of the form'op.type', or just 'op'.

the latter case, the type defaults to the type of the matrix inputs

to the G aphBLAS operati on.
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The 6 conparator operators cone in two flavors. For the is*
operators, the result has the same type as the inputs, x and vy,
with 1 for true and 0 for false. For exanple isgt.double (pi, 3.0)
is the double value 1.0. For the second set of 6 operators (eq,
ne, gt, It, ge, le), the result is always |logical (true or false).
In a semring, the type of the add nmonoid nust exactly match the
type of the output of the multiply operator, and thus
"plus.iseq.double' is valid (counting how many terns are equal).
The " plus.eq.double' semring is valid, but not the same semring
since the '"plus' of 'plus.eq.double" has a logical type and is thus
equi valent to 'or.eq.double'. The "or.eq" is true if any terns
are equal and false otherwise (it does not count the nunber of
terns that are equal).

The followi ng binary operators are avail able. Mny have equi val ent
synonyns, so that '1st' and 'first' both define the first(x,y) = X
operator.

operat or nanme(s) f(x,y) operator nanes(s) f(x,y)

|

|
1st first X | i seq X ==y
2nd second y | i sne X ~=y
mn m n(x,y) | i sgt X >y
max max(x,y) | islt X <y
+ pl us X+y | i sge X >=y
- m nus X-Yy | isle X <=y
rm nus y- X | == eq X ==
* times X*y | ~= ne X ~=y
/ div xly | > ot X >y
\ rdiv yl x | < It X <y
| || or lor X |y | >= ge X >=y
& && and land x &y | <= le X <=y
xor | xor xor (X, y)

The three | ogical operators, lor, land, and |Ixor, also conme in 11
types. z = lor.double (x,y) tests the condition (x~=0) || (y~=0),
and returns the double value 1.0 if true, or 0.0 if false.
Exampl e:

% valid binary operators

gb. bi nopinfo (' +.double") ;

gb. binopinfo ('1st.int32") ;

% invalid binary operator (an error; this is a unary op):
gb. bi nopi nfo (' abs. double') ;

See al so gb, gb.unopinfo, gb.semringinfo, gb.descriptorinfo.

hel p gb. nonoi di nfo

GB. MONO DINFO | i st the details of a G aphBLAS nonoid
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Usage

gb. nonoi di nf o
gb. nonoi di nf o ( nonoi d)
gb. nonoi di nfo (nonoi d, type)

For gb. nonoi di nfo(op), the op nmust be a string of the form
"op.type', where 'op' is listed below. The second usage allows the
type to be omtted fromthe first argument, as just 'op'. This is
valid for all G aphBLAS operations, since the type defaults to the
type of the input matrices. However, gb.nonoidinfo does not have a
default type and thus one must be provided, either in the op as

gb. monoi dinfo (' +.double'), or in the second argunent,

gb. monoi dinfo ('+', 'double').

The MATLAB interface to G aphBLAS provides for 44 di fferent
nonoids. The valid nonoids are: "+, '"*', 'max', and 'mn' for all
but the '"logical' type, and '|', "&, 'xor', and 'eq for the

"l ogical' type.

Exampl e:

% val i d nonoi ds
gb. monoi dinfo (' +. doubl e')
gb. monoidinfo ('*.int32")

% i nvalid nonoids
gb. monoi dinfo ('1st.int32")
gb. nonoi di nfo (' abs. doubl e")

See al so gb. unopi nfo, gb. bi nopi nfo, gb.sem ringinfo,
gb. descri ptori nfo.

Element-wise operations

Binary operators can be used in element-wise matrix operations, like C=A+B and C=A.*B. For the matrix
addition C=A+B, the pattern of C isthe set union of A and B, and the '+' operator is applied for entriesin
the intersection. Entriesin A but not B, or in B but not A, are assigned to C without using the operator.
The '+ operator is used for C=A+B but any operator can be used with gb.eadd.

A =gb (sprand (3, 3, 0.5)) ;
B = gb (sprand (3, 3, 0.5)) ;
Cl A+ B

gb.eadd ('+', A B)
err = norm (Cl-C2, 1)

Cl =
3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1,1) 0. 666139
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(3,1) 0. 735859
(1,2) 1. 47841
(2,2) 0. 146938
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0. 104226

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1,1) 0. 666139
(3,1) 0. 735859
(1,2) 1. 47841
(2,2) 0. 146938
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0. 104226
err =
0

Subtracting two matrices

A-B and gb.eadd (-', A, B) are not the same thing, since the '-' operator is not applied to an entry that is

in B but not A.

Cl = A-B

C2 =gb.eadd ('-', A B)
Cl =

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1,1) -0. 666139
(3,1) - 0. 735859
(1,2) - 0. 334348
(2,2) -0. 146938

(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0. 104226

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1,1) 0. 666139
(3,1) 0. 735859
(1,2) - 0. 334348
(2,2) 0. 146938
(3,2) 0. 566879

10
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(2,3) 0. 248635
(3,3) 0. 104226

But these give the same result

Cl = AB
2 gb.eadd ('+', A gb.apply ('-', B))
err = norm (Cl-C2,1)

Cl =
3x3 G aphBLAS double matrix, standard CSC, 7 entries
(1,1) -0. 666139
(3,1) - 0. 735859
(1,2 -0.334348
(2,2) -0.146938
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0.104226
Cc =

3x3 G aphBLAS double matrix, standard CSC, 7 entries

(1,1) -0. 666139
(3,1) - 0. 735859
(1,2) - 0. 334348
(2,2) -0. 146938

(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0. 104226

Element-wise 'multiplication’

For C = A.*B, the result C is the set intersection of the pattern of A and B. The operator is applied to
entriesin both A and B. Entriesin A but not B, or B but not A, do not appear in the result C.

Cl = A*B

C2 =gb.emult ("*', A B)

C3 = double (A .* double (B)
Cl =

3x3 G aphBLAS double matrix, standard CSC, 1 entry

(1,2) 0.518474

11
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2 =
3x3 G aphBLAS double matrix, standard CSC, 1 entry
(1,2) 0.518474

C3 =

(1,2) 0.5185

Just as in gh.eadd, any operator can be used in gb.emult:

A
B
C = gbh.emult ("max', A B)

A =
3x3 G aphBLAS double matrix, standard CSC, 4 entries
(1,2 0. 572029
(3,2) 0. 566879
(2,3) 0. 248635
(3,3) 0.104226
B =
3x3 G aphBLAS double matrix, standard CSC, 4 entries
(1,1) 0. 666139
(3,1) 0. 735859
(1,2 0. 906378
(2,2) 0. 146938
Cc =

3x3 G aphBLAS double matrix, standard CSC, 1 entry

(1,2) 0. 906378

Overloaded operators

Thefollowing operators all work as you would expect for any matrix. The matrices A and B can be Graph-
BLAS matrices, or MATLAB sparse or dense matrices, in any combination, or scalars where appropriate:

AtB A-B A*B A *B A/B A\B A”*b Ab CA(l,J)
-A +A ~A A A AB A B b\A  C(1,J3)=A
A-=B A>B A==B A<=B A>=B A<B [A B] [A B]
A(1: end, 1: end)

12
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For A”b, b must be a non-negative integer.

Cl [AB] ;
C2 = [doubl e(A) doubl e(B)]
assert (isequal (double (Cl), C2))

Cl = A2

c2 double (A)"2 ;

err = norm(Cl - C2, 1)
assert (err < le-12)

c1 =

3x3 GraphBLAS double matrix, standard CSC, 5 entries

(2,2) 0. 140946
(3,2) 0. 0590838
(1,3) 0. 142227
(2,3) 0. 0259144
(3,3) 0. 151809

err =

0

Cl = A (1:2,2:end)

A = double (A ;

C = A (1:2,2:end) ;

assert (isequal (double (Cl), C2))

Cl =
2x2 G aphBLAS double matrix, standard CSC, 2 entries

(1,1) 0. 572029
(2,2) 0. 248635

Overloaded functions

Many MATLAB built-in functions can be used with GraphBLAS matrices:

A few differences with the built-in functions:

S = sparse (Q % makes a copy of a gb matrix

F="full (Q % adds explicit zeros, so numel (F)==nnz(F)
F="full (Gid) % adds explicit identity values to a gb matrix
disp (G level) %display a gb matrix G level=2 is the default.

In the list below, the first set of Methods are overloaded built-in methods. They are used as-is on Graph-
BLAS matrices, such as C=abs(G). The Static methods are prefixed with "gb.", asin C = gb.apply ( ...).

nmet hods gb

13
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Met hods for class gb:

abs ge | di vi de single
al | graph l e si ze

amd ot l ength spar se
and hor zcat | ogi cal spfun
any int1l6 It spones
assert i nt 32 max sprintf
bandwi dt h i nt 64 mn sqrt

ceil int8 m nus subsasgn
col and i sa m di vi de subsr ef
conpl ex i sbanded npower sum

conj i sdi ag nr di vi de symand
ctranspose i sempty ntimes synrcm
di ag i sequal ne times

di graph isfinite nnz transpose
di sp i sfl oat nonzer os tri

di spl ay i shermtian norm triu
dnperm i sinf not true
doubl e i si nteger nunel uint16
eig i sl ogi cal nzmax ui nt 32
end ismatrix ones ui nt 64
eps i snan or uint8

eq i snumeric pl us um nus
etree i sreal power upl us
fal se i sscal ar pr od vertcat
find i ssparse rdivi de xor

fix i ssymetric real zer os

fl oor istril r epmat

fprintf istriu reshape

full i svect or round

gb kron sign

Static nethods:

apply emul t i sfull sel ect
assign entries i ssi gned sem ringinfo
bf s expand ktruss speye

bi nopi nfo extract | apl aci an subassi gn
bui |l d extracttupl es ms t hr eads
chunk eye nmonoi di nf o tri count
cl ear f or mat mKm type
conpact gbkron nonz unopi nfo
descriptorinfo gbtranspose of f di ag vreduce
dnn i nci dence pager ank

eadd i sbycol prune

enpty i sbyr ow reduce

Zeros are handled differently

Explicit zeros cannot be automatically dropped from a GraphBLAS matrix, like they are in MATLAB
sparse matrices. In a shortest-path problem, for example, an edge A(i,j) that is missing has an infinite
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weight, (the monoid identity of min(x,y) is +inf). A zero edge weight A(i,j)=0 is very different from an
entry that is not present in A. However, if a GraphBLAS matrix is converted into a MATLAB sparse
matrix, explicit zeros are dropped, which is the convention for a MATLAB sparse matrix. They can also
be dropped from a GraphBLAS matrix using the gb.select method.

G =gb (magic (2))
G(1,1) =0 % 1,1) still appears as an explicit entry
A = double (Q % but it's dropped when converted to MATLAB sparse
H = gb.select ('nonzero', G %drops the explicit zeros fromG
fprintf (‘nnz (Q: % nnz (A): % nnz (H: %\n",

nnz (G, nnz (A, nnz (H))
fprintf (‘numentries in G %l\n', gb.entries (Q)

G =
2x2 GraphBLAS double matrix, standard CSC, 4 entries

(1, 1)
(2,1)
(1,2)
(2,2)

NWwhr~O

A =
(2,1)
(1,2)
(2,2)

N W s

H =

2x2 G aphBLAS double matrix, standard CSC, 3 entries

(2,1) 4
(1,2) 3
(2,2) 2

nnz (G: 3 nnz (A: 3 nnz (H: 3
numentries in G 4

Displaying contents of a GraphBLAS matrix

Unlike MATLAB, the default is to display just afew entries of a gb matrix. Here are all 100 entries of a
10-by-10 matrix, using a non-default disp(G,3):

G = gb (rand (10))
% di spl ay everything:
disp (G 3)
G =
10x10 GraphBLAS double matrix, standard CSC, 100 entries

(1,1) 0. 0342763
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(2,1)
(3, 1)
(4, 1)
(5, 1)
(6,1)
(7,1)
(8,1)
(9, 1)
(10,1)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(7,2)
(8,2)
(9,2)
(10, 2)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(7,3)
(8,3)
(9,3)
(10, 3)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(7,4)
(8,4)
(9, 4)
(10, 4)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(7,5)
(8,5)
(9,5)
(10, 5)
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)

[cNeoNoNoNeoloNolNolNo) [cNeoNoNoNeoloNolNolNo) [cNeoNoNoNeoloNolNolNo) cNoNoNeoNelNeNoNo)

[cNoNoNoNeoloNolNolNo)

. 17802

. 887592
. 889828
. 769149
. 00497062
. 735693
. 488349
. 332817
0. 0273313
. 467212
. 796714
. 849463
. 965361
. 902248
. 0363252
. 708068
. 322919
. 700716
0. 472957
. 204363
. 00931977
. 565881
. 183435
. 00843818
. 284938
. 706156
. 909475
. 84868
0. 564605
. 075183
. 535293
. 072324
. 515373
. 926149
. 949252
. 0478888
. 523767
. 167203
0. 28341
. 122669
. 441267
. 157113
. 302479
. 758486
. 910563
. 0246916
. 232421
. 38018
0. 677531

0. 869074
0. 471459
0. 624929
0. 987186
0. 282885
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(6, 6) 0. 843833
(7, 6) 0. 869597
(8, 6) 0. 308209
(9, 6) 0.201332
(10, 6) 0. 706603

(1,7) 0. 563222
(2,7) 0.575795
(3,7) 0. 056376
(4,7) 0.73412
(5,7) 0. 608022
(6,7) 0. 0400164
(7,7) 0. 540801
(8,7) 0. 023064
(9,7) 0. 165682
(10, 7) 0. 250393
(1,8) 0. 23865
(2,8) 0. 232033
(3, 8) 0. 303191
(4, 8) 0. 579934
(5, 8) 0. 267751
(6, 8) 0. 916376
(7,8) 0. 833499
(8, 8) 0. 978692
(9, 8) 0. 734445
(10, 8) 0. 102896
(1,9) 0. 353059
(2,9) 0. 738955
(3,9) 0. 57539
(4,9) 0. 751433
(5, 9) 0. 93256
(6,9) 0. 281622
(7,9) 0. 51302
(8,9) 0. 24406
(9,9) 0. 950086
(10, 9) 0. 303638
(1, 10) 0. 563593
(2, 10) 0. 705101
(3, 10) 0. 0604146
(4, 10) 0. 672065
(5, 10) 0. 359793
(6, 10) 0. 62931
(7, 10) 0.977758
(8, 10) 0. 394328
(9, 10) 0. 765651

(10, 10) 0. 457809

That was disp(G,3), so every entry was printed. It's alittle long, so the default is not to print everything.
With the default display (level = 2):
G
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10x10 GraphBLAS double matrix, standard CSC, 100 entries

(1,1) 0. 0342763
(2,1) 0. 17802
(3,1) 0. 887592
(4,1) 0. 889828
(5, 1) 0. 769149
(6, 1) 0. 00497062
(7,1) 0. 735693
(8,1) 0. 488349
(9,1) 0. 332817
(10, 1) 0. 0273313
(1,2) 0. 467212
(2,2) 0.796714
(3,2) 0. 849463
(4,2) 0. 965361
(5, 2) 0. 902248
(6,2) 0. 0363252
(7,2) 0. 708068
(8,2) 0. 322919
(9,2) 0. 700716
(10, 2) 0. 472957
(1,3) 0. 204363
(2,3) 0. 00931977
(3,3) 0. 565881
(4, 3) 0. 183435
(5, 3) 0. 00843818
(6, 3) 0. 284938
(7,3) 0. 706156
(8, 3) 0. 909475
(9, 3) 0. 84868

(10, 3) 0. 564605

That was disp(G,2) or just display(G), which iswhat is printed by aMATLAB statement that doesn't have
atrailing semicolon. With level = 1, disp(G,1) givesjust aterse summary:

disp (G 1)

G =

10x10 GraphBLAS double natrix, standard CSC, 100 entries

Storing a matrix by row or by column

MATLAB stores its sparse matrices by column, refered to as 'standard CSC' in SuiteSparse:GraphBLAS.
In the CSC (compressed sparse column) format, each column of the matrix is stored as a list of entries,
with their value and row index. In the CSR (compressed sparse row) format, each row is stored as a list
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of values and their column indices. GraphBLAS uses both CSC and CSR, and the two formats can be
intermixed arbitrarily. Inits C interface, the default format is CSR. However, for better compatibility with
MATLAB, this MATLAB interface for SuiteSparse:GraphBLAS uses CSC by default instead.

rng ('default') ;

gb. cl ear ; % clear all prior G aphBLAS settings
fprintf ('the default format is: 9%\n', gb.format) ;

C = sparse (rand (2))

G=gb (O

gb.format (Q

the default format is: by col

C =
(1,1) 0. 8147
(2,1) 0. 9058
(1,2 0.1270
(2,2) 0.9134
G =
2x2 G aphBLAS double matrix, standard CSC, 4 entries
(1,1) 0. 814724
(2,1) 0. 905792
(1,2 0.126987
(2,2) 0. 913376
ans =

"by col"

Many graph algorithmswork better in CSR format, with matrices stored by row. For example, itiscommon
to use A(i,)) for the edge (i,j), and many graph algorithms need to access the out-adjacencies of nodes,
which istherow A(i,;) for nodei. If the CSR format is desired, gb.format (‘by row') tells GraphBLAS to
create all subsequent matricesin the CSR format. Converting from aMATLAB sparse matrix (in standard
CSC format) takesalittle moretime (requiring atranspose), but subsequent graph algorithms can be faster.

G=gb (C, '"by row)

fprintf ("the format of Gis: %\n', gb.format (Q) ;
H=gb (O
fprintf ("the format of His: %\n', gb.format (H)) ;

err = norm(H G 1)

G =
2x2 G aphBLAS double matrix, standard CSR, 4 entries
(1,1) 0. 814724
(1,2 0.126987
(2,1) 0. 905792
(2,2) 0.913376
the format of Gis: by row
H =
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2x2 G aphBLAS double matrix, standard CSC, 4 entries

(1,1) 0.814724
(2,1) 0. 905792
(1,2) 0. 126987
(2,2) 0.913376

the format of His: by col
err =
0

Hypersparse matrices

SuiteSparse:GraphBLAS can use two kinds of sparse matrix data structures; standard and hypersparse, for
both CSC and CSR formats. In the standard CSC format used in MATLAB, an m-by-n matrix A takes O(n
+nnz(A)) space. MATLAB can create huge column vectors, but not huge matrices (when n is huge).

clear all
[c, huge] = conputer ;
C = sparse (huge, 1) % MATLAB can create a huge-by-1 sparse col um
try
C = sparse (huge, huge) % but this fails
catch ne
error_expected = ne
end
C =

Al zero sparse: 281474976710655x1
error_expected =
MException with properties:

identifier: 'MATLAB: array: Si zelLi m t Exceeded
nessage: ' Requested 281474976710655x281474976710655
(2097152.0GB) array exceeds nmaxi mum array size preference. Creation
of arrays greater than this [imt may take a long time and cause
MATLAB to become unresponsive. See <a href="matl ab: hel pvi ew([ docr oot
"/ mat| ab/ hel ptargets. map'], 'matlab_env_workspace_prefs')">array size
l[imt</a> or preference panel for nore information.’
cause: {}
stack: [4x1 struct]
Correction: []

In aGraphBLAS hypersparse matrix, an m-by-n matrix A takes only O(nnz(A)) space. The difference can
be hugeif nnz (A) << n.

cl ear

[c, huge] = conputer ;

G = gb (huge, 1) % no problem for G aphBLAS

H = gb (huge, huge) %this works in GraphBLAS too
G =
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281474976710655x1 G aphBLAS double matrix, standard CSC, no
entries

281474976710655x281474976710655 G aphBLAS doubl e matri x,
hyper sparse CSC, no entries

Operations on huge hypersparse matrices are very fast; no component of the time or space complexity

is Omega(n).
randperm (huge, 2) ;

| =

J = randperm (huge, 2) ;

H(lI,J) = mgic (2) ; % add 4 nonzeros to random |l ocations in H
H((l,l) =10 * [12; 34 ; %so H'2 is not all zero

H=H2 ; % square H

H=(H * 2) ; % transpose H and double the entries

K = pi * spones (H ;

H=H+K % add pi to each entry in H

H =

281474976710655x281474976710655 G aphBLAS doubl e matri X,
hypersparse CSC, 8 entries

(27455183225557, 27455183225557) 4403. 14
(78390279669562, 27455183225557) 383. 142
(153933462881710, 27455183225557) 343. 142
(177993304104065, 27455183225557) 3003. 14
(27455183225557, 177993304104065) 2003. 14
(78390279669562, 177993304104065) 183. 142
(153933462881710, 177993304104065) 143. 142
(177993304104065, 177993304104065) 1403. 14

numel uses vpa if the matrix is really huge

el = nunel (Q %this is huge, but still a flint
e2 = nunel (H) %this is huge”2, which needs vpa
whos el e2
el =

2.8147e+14
e2 =
79228162514263774643590529025. 0

Nane Si ze Bytes d ass Attributes

el 1x1 8 double

e2 1x1 8 sym

All of these matrices take very little memory space:
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whos C G H K

Nane Size Bytes d ass
Attributes

G 281474976710655x1 989 gb

H 281474976710655x281474976710655 1308 gb

K 281474976710655x281474976710655 1308 gb

The mask and accumulator

When not used in overloaded operators or built-in functions, many GraphBLAS methods of the form
gb.method ( ... ) can optionally use a mask and/or an accumulator operator. If the accumulator is'+'in
gb.mxm, for example, then C = C + A*B is computed. The mask acts much like logical indexingin MAT-
LAB. With alogical mask matrix M, C<M>=A*B allows only part of C to be assigned. If M(i,j) istrue,
then C(i,j) can be modified. If false, then C(i,j) is not modified.

For example, to set all valuesin C that are greater than 0.5t0 3:

A = rand (3)
C = gb.assign (A, A> 0.5, 3) ; % in GaphBLAS
ClL=gb (A ; CL (A>.5 =3 % al so in GraphBLAS
2 =A ; C2 (A>.5) =3 % in MATLAB
err = norm(C - Cl1, 1)
err = norm(C - C2, 1)
A =
0. 9575 0. 9706 0. 8003
0. 9649 0. 9572 0.1419
0. 1576 0. 4854 0.4218
Cl =
3x3 G aphBLAS double matrix, standard CSC, 9 entries
(1,1) 3
(2,1) 3
(3,1) 0. 157613
(1, 2) 3
(2,2) 3
(3,2) 0. 485376
(1, 3) 3
(2,3) 0.141886
(3,3) 0.421761
2 =

3. 0000 3. 0000 3. 0000

3. 0000 3. 0000 0. 1419

0. 1576 0. 4854 0.4218
err =
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The descriptor

Most GraphBLAS functions of the form gh.method ( ... ) take an optional last argument, called the de-
scriptor. ItisaMATLAB struct that can modify the computations performed by the method. 'help gb.de-
scriptorinfo’ gives al the details. The following is a short summary of the primary settings:

d.out = 'default’ or 'replace, clears C after the accum op is used.

d.mask = 'default’ or ‘complement’, to use M or ~M as the mask matrix.
d.in0 = 'default’ or ‘transpose, to transpose A for C=A*B, C=A+B, etc.
d.inl1 = 'default’ or 'transpose, to transpose B for C=A*B, C=A+B, etc.

d.kind = 'default’, 'gb', 'sparse’, or 'full’; the output of gb.method.

A = sparse (rand (2))

B = sparse (rand (2))

Cl = A*B;

C =gb.mxm(("'+.*", A B, struct ('in0, '"transpose'))

err = norm (Cl-C2,1)

err =
0

Integer arithmetic is different in GraphBLAS

MATLAB supports integer arithmetic on its full matrices, using int8, int16, int32, int64, uint8, uintl6,
uint32, or uinté4 data types. None of these integer data types can be used to construct aMATLAB sparse
matrix, which can only be double, double complex, or logical. Furthermore, C=A*B is not defined for
integer typesin MATLAB, except when A and/or B are scalars.

GraphBLAS supports al of those types for its sparse matrices (except for complex, which will be added
in the future). All operations are supported, including C=A*B when A or B are any integer type, for al
1,865 semirings (1,040 of which are unique).

However, integer arithmetic differsin GraphBLAS and MATLAB. In MATLAB, integer values saturate
if they exceed their maximum value. In GraphBLAS, integer operators act in amodular fashion. The latter
is essential when computing C=A*B over a semiring. A saturating integer operator cannot be used as a
monoid since it is not associative.

The C API for GraphBLAS allows for the creation of arbitrary user-defined types, so it would be possible
to create different binary operatorsto allow element-wise integer operations to saturate, perhaps:

C = gb. eadd(' +saturate', A B)
Thiswould require an extension to this MATLAB interface.

C

uint8 (magic (3))
G .

gb (O
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Cl =C* 40
C2 =G* 40
C3 = double (Q * 40 ;

S = doubl e (Cl < 255)
assert (isequal (double (Cl).*S, double (C2).*S))
assert (isequal (nonzeros (C2), double (mobd (nonzeros (C3), 256))))

ClL =
3x3 uint8 matrix
255 40 240
120 200 255
160 255 80

3x3 GraphBLAS uint8 t matrix, standard CSC, 9 entries

(1,1) 64
(2,1) 120
(3,1) 160
(1,2) 40
(2,2) 200
(3,2) 104
(1,3) 240
(2,3) 24
(3,3) 80

An example graph algorithm: breadth-first
search

The breadth-first search of a graph finds all nodes reachable from the source node, and their level, v.
v=gb.bfs(A,s) or v=bfs matlab(A,s) compute the same thing, but gb.bfs uses GraphBLAS matrices and
operations, while bfs_matlab uses pure MATLAB operations. v is defined as v(s) = 1 for the source node,
v(i) = 2 for nodes adjacent to the source, and so on.

clear all

rng ('default")

n = 1le5 ;

A = logical (sprandn (n, n, 1le-3))

tic
vl = gb.bfs (A 1)
gb_time =toc ;

tic
v2 = bfs_matlab (A 1)
matlab_tinme = toc ;

assert (isequal (double (v1'), v2))

fprintf ('\nnodes reached: % of %l\n', nnz (v2), n)
fprintf (' GaphBLAS tine: % sec\n', gb_tinme)
fprintf (' MATLAB tine: % sec\n', matlab_tine)
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fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',
matlab_time / gb_tinme)

nodes reached: 100000 of 100000

GraphBLAS tine: 0.653887 sec

MATLAB ti me: 0. 457752 sec

Speedup of G aphBLAS over MATLAB: 0.700048

Example graph algorithm: Luby's method in
GraphBLAS

The gb.mis.m function is variant of Luby's randomized algorithm [Luby 1985]. It is a paralel method for
finding an maximal independent set of nodes, where no two nodes are adjacent. Seethe GraphBLA S @gb/
gh.mis.m function for details. The graph must be symmetric with azero-free diagonal, so A issymmetrized
first and any diagonal entries are removed.

A =gb (A ;

A = gb.offdiag (AJA) ;
tic

s = gh.ms (A ;

toc

fprintf ('# nodes in the graph: %\n', size (A 1)) ;

fprintf ('# edges: : %\n', gb.entries (A [/ 2) ;

fprintf ('size of maximal independent set found: %g\n',
full (double (sum(s)))) ;

% make sure it's independent

p=find (s) ;
S=A(pDp ;
assert (gb.entries (S) == 0)

% make sure it's maxi mal

notp = find (s == 0) ;

S =A((notp, p) ;

deg = gb.vreduce ('+.int64', S) ;
assert (logical (all (deg > 0)))

El apsed tine is 0.429444 seconds.

# nodes in the graph: 100000

# edges: : 9.9899e+06

size of maxi mal independent set found: 2811

Sparse deep neural network

The 2019 MIT GraphChallenge (see http://graphchallenge.org) is to solve a set of large sparse deep neur-
al network problems. In this demo, the MATLAB reference solution is compared with a solution using
GraphBLAS, for arandomly constructed neural network. See the gb.dnn and dnn_matlab.m functions for
details.

clear all
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rng ('default")

nl ayers = 16 ;

nneurons = 4096

nfeatures = 30000

fprintf ('# |ayers: %\ n', nlayers)
fprintf ('# neurons: %\ n', nneurons)
fprintf ('# features: %\ n', nfeatures)

tic

YO0 = sprand (nfeatures, nneurons, 0.1)

for layer = 1:nlayers
W{l ayer} = sprand (nneurons, nneurons, 0.01) * 0.2
bias {layer} = -0.2 * ones (1, nneurons)

end

t_setup = toc

fprintf ('construct problemtine: % sec\n', t_setup)

% convert the problemfrom MATLAB to G aphBLAS

t =tic ;
[Wagb, bias_gb, YO_gb] = dnn_mat2gb (W bias, YO0)
t =toc (t)

fprintf ('setup tine: % sec\n', t)

# | ayers: 16

# neurons: 4096

# features: 30000

construct problemtine: 5.82564 sec
setup time: 0.353485 sec

Solving the sparse deep neural network prob-
lem with GraphbLAS

Please wait ...

tic

Y1l = gb.dnn (Wgb, bias_gb, YO_gb)

gb_time =toc ;

fprintf ("total tine in G aphBLAS: % sec\n', gb_tine)

total time in G aphBLAS: 11.2218 sec

Solving the sparse deep neural network prob-
lem with MATLAB

Please wait ...

tic

Y2 = dnn_matl ab (W bias, YO0)

matl ab_tine = toc

fprintf ("total tinme in MATLAB: % sec\n', matlab_tine)
fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',
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matlab_time / gb_tine) ;
err = norm (Y1-Y2, 1)

total time in MATLAB: 104. 735 sec
Speedup of G aphBLAS over MATLAB: 9.33314
err =

0

GraphBLAS has better colon notation than
MATLAB

The MATLAB notation C = A (start:inc:fini) is very handy, but in both the built-in operators and the
overloaded operators for objects, MATLARB starts by creating the explicit index vector | = start:inc:fini.
That'sfineif thematrix ismodest in size, but GraphBLAS can construct huge matrices (and MATLAB can
build huge sparse vectorsaswell). The problemisthat 1:n cannot be explicitly constructed when nishuge.

GraphBLAS can represent the colon notation start:inc:fini in an implicit manner, and it can do theindexing
without actually forming the explicit list | = start:inc:fini.

Unfortunately, this meansthat the elegant MATLAB colon notation start:inc:fini cannot be used. To com-
pute C = A (start:inc:fini) for very huge matrices, you need to use use a cell array to represent the colon
notation, as{ start, inc, fini }, instead of start:inc:fini. See 'help gb.extract' and 'help.gbsubassign' for, for
C(1,9=A. The syntax isn't conventional, but it is far faster than the MATLAB colon notation, and takes
far lessmemory when | is huge.

n = lel4 ,

H=gb (n, n) ; % a huge enpty matrix

I =1 1e9 lel2 1lel4d] ;

M = magic (4)

H(l,l) =M;

J = {1, 1e13} ; % represents 1:1el3 colon notation
Cl =H(@J, J) % conmputes Cl1 = H (1:el3,1:1el3)

¢ = nonzeros (Cl) ;
m = nonzeros (M (1:3, 1:3)) ;
assert (isequal (c, m) ;

M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
ClL =

10000000000000x10000000000000 GraphBLAS doubl e matri x, hypersparse
CSC, 9 entries

(1,1) 16

(1000000000, 1) 5
(1000000000000, 1) 9

(1, 1000000000) 2
(1000000000, 1000000000) 11
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(1000000000000, 1000000000) 7

(1, 1000000000000) 3

(1000000000, 1000000000000) 10
(1000000000000, 1000000000000) 6

try
%try to conmpute the same thing with col on
% notation (1:1el13), but this fails:
C2 = H (1:1el3, 1:1el3)
catch ne
error_expected = ne
end

error_expected =
MException with properties:

identifier: 'MATLAB: array: Si zeli m t Exceeded
nmessage: ' Requested 10000000000000x1 (74505.8GB) array exceeds
maxi mum array size preference. Creation of arrays greater than this
l[imt may take a long time and cause MATLAB to become unresponsive.
See <a href="matl ab: hel pview([docroot '/nmatl ab/hel ptargets. map'],
"mat | ab_env_wor kspace_prefs')">array size limt</a> or preference
panel for nore information.'
cause: {}
stack: [4x1 struct]
Correction: []

Ilterative solvers work as-is

Many built-in functions work with GraphBLAS matrices unmodified.

A = sparse (rand (4)) ;
b = sparse (rand (4,1)) ;
X = gnres (A b)

nor m ( A*x- b)

x = gnres (gb(A), gb(b))
nor m ( A*x- b)

gnres converged at iteration 4 to a solution with relative residual O.

0. 9105
3. 8949
-0. 5695
-1. 3867
ans =
8.6711le-16
gnres converged at iteration 4 to a solution with relative residual O.

0. 9105
3. 8949
- 0. 5695
-1.3867
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7.2802e-16

... even in single precision

x = gnres (gh(A 'single ), gb(b, single"))
norm (A*x-b)

gnres converged at iteration 4 to a solution with relative residual O.

X =
0. 9105
3. 8949
-0. 5695
-1. 3867
ans =
3. 6346e-07

Both of the following uses of minres (A,b) fail to converge because A is not symmetric, as the method
requires. Both failures are correctly reported, and both the MATLAB version and the GraphBLAS version
return the same incorrect vector Xx.

X
X

mnres (A b)
mnres (gb(A), gb(b))

m nres stopped at iteration 4 without converging to the desired
tol erance le-06
because the maxi mum nunmber of iterations was reached.
The iterate returned (nunber 4) has relative residual 0.21
X =
0.2489
0. 2081
0. 0700
0. 3928
m nres stopped at iteration 4 without converging to the desired
tol erance le-06
because the maxi mum nunmber of iterations was reached.
The iterate returned (nunber 4) has relative residual 0.21

X =
4x1 G aphBLAS double matrix, standard CSC, 4 entries

(1,1) 0. 248942
(2,1) 0.208128
(3,1) 0. 0699707
(4,1) 0. 392812

With a proper symmetric matrix

A = A+tA

X mnres (A b)

nor m ( A*x-b)

x = mnres (gh(A), gb(b))
nor m ( A*x-b)
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m nres converged at iteration 4 to a solution with relative residual

1. 3e-11.
X =
-114. 0616
-1. 4211
134. 8227
2.0694
ans =
1.3650e-11
m nres converged at iteration 4 to a solution with relative residual
1. 3e-11.
X =
4x1 G aphBLAS double matrix, standard CSC, 4 entries
(1,1) -114. 062
(2,1) -1. 4211
(3,1) 134.823
(4,1) 2.0694
ans =

1. 3650e-11

Extreme performance differences between
GraphBLAS and MATLAB.

The GraphBLAS operations used so far are perhaps 2x to 50x faster than the corresponding MATLAB
operations, depending on how many cores your computer has. To run ademo illustrating a 500x or more
speedup versus MATLAB, run this demo:

gbdenn2

It will illustrate an assignment C(l,J)=A that can take under a second in GraphBLAS but several minutes
in MATLAB. To make the comparsion even more dramatic, try:

gbdenp2 (20000)

assuming you have enough memory. The gbdemoz2 is not part of this demo since it can take along time;
it tries arange of problem sizes, and each one takes several minutesin MATLAB.

Sparse logical indexing is much, much faster
In GraphBLAS

The mask in GraphBLAS acts much likelogical indexingin MATLAB, but it is not quite the same. MAT-
LAB logical indexing takes the form:

C(M =A(M
which computes the same thing as the GraphBLAS statement:

C =gb.assign (C, M A
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The gb.assign statement computes C(M)=A(M), and it is vastly faster than C(M)=A(M), even if thetime
to convert the gb matrix back to aMATLAB sparse matrix is included.

GraphBLAS can aso compute C (M) = A (M) using overloaded operators for subsref and subsasgn, but
C =gb.assign (C, M, A) isabit faster.

First, both methods in GraphBLAS (both are very fast):

cl ear

n 4000 ;
ti
C

Inmn o

sprand (n, n, 0.1)

A = 100 * sprand (n, n, 0.1)

M= (C> 0.5)

t_setup = toc ;

fprintf ("nnz(Q: %, nnz(M: %, nnz(A): %\n',
nnz(C, nnz(M, nnz(A)) ;

fprintf ('\nsetup tine: % sec\n', t_setup)

% include the tine to convert Cl1 froma G aphBLAS

% matrix to a MATLAB sparse natri x:

tic

Cl = gh.assign (C, M A

Cl = double (C1)

gb_time =toc ;

fprintf ("\nGaphBLAS tine: % sec for gb.assign\n', gb_tine)

% now usi ng overl oaded operators, also include the tine to
% convert back to a MATLAB sparse matrix, for good neasure:

A2 = gb (A

G2 =g¢gb (O
tic

2 (M =A (M

C2 = double (C2)

gb_time2 = toc ;

fprintf ("\nGaphBLAS tine: % sec for C(M=A(M\n", gb_tinme2)
nnz(C): 1.5226e+06, nnz(M: 761163, nnz(A): 1.52245e+06

setup tine: 1. 05699 sec

GraphBLAS tine: 0.053321 sec for gh.assign

GraphBLAS tine: 0.106393 sec for C(M=A(M
Please wait, this will take about 10 minutesor so ...

tic
c(M =A(M

matlab_tinme = toc ;

fprintf ("\nGaphBLAS tine: % sec (gb.assign)\n', gb_tinme)
fprintf ("\nGaphBLAS tine: % sec (overloading)\n', gb_tinme2)
fprintf (' MATLAB tine: % sec\n', matlab_tine)

fprintf (' Speedup of G aphBLAS over MATLAB: %g\n',

31



GraphBLAS: graph algorithms
in the language of linear algebra

matl ab_tine / gb_tinme2) ;

% GraphBLAS conputes the exact sanme result with both nethods:
assert (isequal (C1, Q)

assert (isequal (C2, Q)

Cl-C

c2 - C

GraphBLAS tine: 0.053321 sec (gb.assign)

GraphBLAS tine: 0.106393 sec (overl oadi ng)
MATLAB ti ne: 724.02 sec
Speedup of G aphBLAS over MATLAB: 6805. 15
ans =

Al'l zero sparse: 4000x4000
ans =

Al'l zero sparse: 4000x4000

Limitations and their future solutions

The MATLAB interface for SuiteSparse:GraphBLAS is awork-in-progress. It has some limitations, most
of which will be resolved over time.

(1) Nonblocking mode:

GraphBLAS has a 'non-blocking' mode, in which operations can be left pending and completed later.
SuiteSparse:GraphBLAS uses the non-blocking mode to speed up a sequence of assignment operations,
such as C(l,J)=A. However, in its MATLAB interface, this would require a MATLAB mexFunction to
modify itsinputs. That breaks the MATLAB APl standard, so it cannot be safely done. As aresult, using
GraphBLAS viaits MATLAB interface can be slower than when using its C API. This restriction would
not be alimitation if GraphBLAS were to be incorporated into MATLAB itself, but thereislikely no way
to do thisin a mexFunction interface to GraphBLAS.

(2) Complex matrices:

GraphBLAS can operate on matrices with arbitrary user-defined types and operators. The only constraint
isthat the type be afixed sized typedef that can be copied with the ANSI C memcpy; variable-sized types
are not yet supported. However, in this MATLAB interface, SuiteSparse:GraphBLAS has access to only
predefined types, operators, and semirings. Complex types and operators will be added to this MATLAB
interface in the future. They already appear in the C version of GraphBLAS, with user-defined operators
in GraphBL A S/Demo/Source/usercomplex.c.

(3) Integer element-wise operations:

Integer operationsin MATLAB saturate, so that uint8(255)+1is255. To allow for integer monoids, Graph-
BLAS uses modular arithmetic instead. Thisis the only way that C=A*B can be defined for integer semi-
rings. However, saturating integer operators could be added in the future, so that element- wise integer op-
erations on GraphBLASS sparse integer matrices could work just the same astheir MATLAB counterparts.

So in the future, you could perhaps write this, for both sparse and dense integer matrices A and B:
C = gb.eadd (' +saturate.int8 , A B)

to compute the same thing as C=A+B in MATLAB for its full int8 matrices. % Note that MATLAB can
do this only for dense integer matrices, since it doesn't support sparse integer matrices.
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(4) Faster methods:

Most methodsin thisMATLAB interface are based on efficient parallel C functionsin GraphBLAS itself,
and aretypically asfast or faster than the equivalent built-in operators and functionsin MATLAB.

There are few notable exceptions; these will be addressed in the future. Dense matrices and vectors held
as GraphBLAS objects are slower than their MATLAB counterparts. horzcat and vertcat, for [A B] and
[A;B] when either A or B are GraphBLAS matrices, are also slow, asillustrated below in the next example.

Other methods that will be faster in the future include bandwidth, istriu, istril, eps, ceil, floor, round, fix,
isfinite, isinf, isnan, spfun, and A.”B. These methods are currently implemented in m-files, not in efficient
paralel C functions.

Here is an example that illustrates the performance of C = [A B]

cl ear

A = sparse (rand (2000)) ;
B = sparse (rand (2000)) ;
tic

Cl =[AB ;

matlab_tinme = toc ;

A =gb (A ;
B =gb (B ;
ti

@2 =[AB ;
gb_time =toc ;

o I

err = norm (Cl-C2,1)
fprintf ('\nMATLAB: %y sec, G aphBLAS: % sec\n’
matl ab_time, gb_tine) ;
if (gh_tine > matlab_tine)
fprintf (' GaphBLAS is slower by a factor of %g\n',
gb_time / matlab_tinme) ;

end

MATLAB: 0.036671 sec, G aphBLAS: 0.121573 sec
GraphBLAS is slower by a factor of 3.31524

(5) Linear indexing:

If A isan m-by-n 2D MATLAB matrix, with n > 1, A(;) is a column vector of length m*n. The index
operation A(i) accessestheith entry in thevector A(;). Thisiscalled linear indexingin MATLAB. It isnot
yet available for GraphBLAS matrices in this MATLAB interface to GraphBLAS, but it could be added
in the future.

(6) Implicit binary expansion

In MATLAB C=A+B where A is m-by-n and B is a 1-by-n row vector implicitly expands B to a matrix,
computing C(i,j)=A(i,j)+B(j). Thisimplicit expansion is not yet suported in GraphBLAS with C=A+B.
However, it can be done with C = gb.mxm (‘'+.+', A, diag(gb(B))). That's an nice example of the power of
semirings, but it's not immediately obvious, and not as clear a syntax as C=A+B. The GraphBLAS @gb/
dnn.m function uses this 'plus.plus’ semiring to apply the bias to each neuron.
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A = magic (3)

B = 1000: 1000: 3000

CL=A+8B

C2 = gb.mxm (' +. +, A diag (gb (B)))
err = norm (Cl-C2,1)

A =
8 1 6
3 5 7
4 9 2
B =
1000 2000 3000
c1 =
1008 2001 3006
1003 2005 3007
1004 2009 3002
C2 =

3x3 G aphBLAS double matrix, standard CSC, 9 entries

(1,1) 1008
(2,1) 1003
(3, 1) 1004
(1,2) 2001
(2,2) 2005
(3,2) 2009
(1,3) 3006
(2,3) 3007
(3,3) 3002

(7) Other features are not yet in place, such as:

S = gparse (i,j,X) alows either i or j, and X, to be scalars, which are implicitly expanded. Thisis not yet
supported by gb.build.

GraphBLAS operations

In addition to the overloaded operators (such as C=A*B) and overloaded functions (such as L=tril(A)),
GraphBLASa so hasmethods of theform gh.method, listed on the next page. M ost of them take an optional
input matrix Cin, which is the initial value of the matrix C for the expression below, an optional mask
matrix M, and an optional accumulator operator.

C<#M replace> = accum (C, T)

In the above expression, #M is either empty (no mask), M (with a mask matrix) or ~M (with a comple-
mented mask matrix), as determined by the descriptor. ‘replace’ can be used to clear C after it isused in
accum(C,T) but before it is assigned with C<...> = Z, where Z=accum(C,T). The matrix T is the result of
some operation, such as T=A*B for gb.mxm, or T=op(A,B) for gb.eadd.

A summary of these gb.methods is on the next pages.
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Methods for the gb class:

These net hods operate on G aphBLAS matrices only, and they overl oad
t he existing MATLAB functions of the same nane.

C=gb (...) construct a GraphBLAS matri x

C = sparse (G nmakes a copy of a gb matrix

C=full (G ...) adds explicit zeros or id values to a gb
mat ri x

C = double (G cast gb matrix to MATLAB sparse double matrix
C = logical (G cast gb matrix to MATLAB sparse |logical matrix
C = complex (G cast gb matrix to MATLAB sparse conpl ex
C=single (G cast gb matrix to MATLAB full single matrix
C=int8 (G cast gb matrix to MATLAB full int8 matrix
C=intlé (Q cast gb matrix to MATLAB full intl16 matrix
C=int32 (Q cast gb matrix to MATLAB full int32 matrix
C=int6d4 (G cast gb matrix to MATLAB full int64 matrix
C=uint8 (Q cast gb matrix to MATLAB full uint8 matrix
C=uint16 (Q cast gb matrix to MATLAB full uintl6 matrix
C=uint32 (G cast gb matrix to MATLAB full uint32 matrix
C=uint6d (G cast gb matrix to MATLAB full uint64 matrix
C=vcast (G...) cast gb matrix to MATLAB matri x (as above)

X = nonzeros (G extract all entries froma gb matrix

[1,3,X] =find (G extract all entries froma gb matrix

C = spones (G return pattern of gb matrix

disp (G level) display a gb matrix G

di splay (G display a gbh matrix G sane as disp(G 2)

m = nunel (Q nn for an mby-n gb matrix G

e = nnz (G nunber of entries in a gb matrix G

e = nzmax (Q nunber of entries in a gb matrix G

[mn] = size (Q size of a gb matrix G

n =1length (G l ength of a gb vector

s = isempty (Q true if any dinension of Gis zero

s = issparse (G true for any gb matrix G

s =ismatrix (Q true for any gb matrix G

s = isvector (Q true if m=1 or n=1, for an mby-n gb matrix G
s = iscolum (Q true if n=1, for an mby-n gb matrix G

s = isrow (Q true if nmel, for an mby-n gb matrix G

s = isscalar (Q true if Gis a 1-by-1 gb matrix

s = isnumeric (Q true for any gb matrix G (even | ogical)

s = isfloat (Q true if gb matrix is double, single, conplex
s = isreal (Q true if gb matrix is not conplex

s = isinteger (Q true if gb matrix is int8, intl6, ..., uint64
s = islogical (Q true if gb matrix is |ogical

s = isa (G classnane) check if a gb matrix is of a specific class
C=diag (G Kk) di agonal matrices and diagonals of gb matrix G
L=tril (GKk) | ower triangular part of gb matrix G
U=triu (GKk) upper triangular part of gb matrix G

C = kron (A B) Kr onecker product

C=repmat (G ...) replicate and tile a GraphBLAS matri x

C = reshape (G ...) reshape a G aphBLAS matri x

C = abs (Q absol ute val ue
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C=sign (G si gnum function

s =istril (G true if Gis |lower triangular

s =istriu (Q true if Gis upper triangular

s = isbanded (G ...) true if Gis banded

s = isdiag (G true if Gis diagonal

s = ishermtian (G true if Gis Hermtian

s = issymetric (Q true if Gis symetric

[lo,hi] = bandwidth (G determ ne the |ower & upper bandw dth of G
C = sum (G option) reduce via sum to vector or scalar

C = prod (G option) reduce via product, to vector or scal ar
s = norm (G kind) l1-normor inf-normof a gb matrix
C=mx (G ...) reduce via max, to vector or scalar
C=mn (G ...) reduce via mn, to vector or scalar
C=any (G ...) reduce via '|', to vector or scalar
C=all (G ...) reduce via '& , to vector or scalar
C=sqgrt (Q el ement -w se square root

C=-¢eps (G fl oati ng-poi nt spacing

C=ceil (Q round towards infinity

C=floor (Q round towards -infinity

C=round (G round towards nearest

C=fix (Q round towards zero

C=isfinite (Q test if finite

C=isinf (Q test if infinite

C =isnan (Q test if NaN

C = spfun (fun, Q evaluate a function on the entries of G
p =anmd (Q approxi mate nm ni mum degree ordering

p = colanmd (Q col um approxi mate m ni nrum degree ordering
p = symand (G approxi mate nm ni mum degree ordering

p = symcm (G reverse Cuthill-MKee ordering

[...] = dmperm (G Dul mage- Mendel sohn permut ati on

parent = etree (Q elimnation tree

C =conj (G conpl ex conj ugat e

C=real (G real part of a conplex G aphBLAS matrix
[V, ...] =eig (G...) eigenvalues and ei genvectors

assert (Q generate an error if Gis false
C=2zeros (...,"'like" ,Q§ all-zero matrix, same type as G
C=false (...,"'like" ,Q§ all-false logical matrix

C=ones (...,"'like",Q matrix with all ones, sane type as G

Operator overloading:

plus (A B)

m nus (A, B)
um nus (G
uplus (Q

times (A, B)
ntimes (A, B)
rdivide (A, B)

I divide (A, B)
nrdi vide (A, B)
m di vide (A, B)
power (A, B)
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C = npower (A, B) C=A"B

C=1t (A B) C=A<B

C=gt (A B) C=A>8B

C=1le (A B) C=A<=8B

C =ge (A B C=A>1B

C =ne (A B) C=A-~-=8B

C=-eq (A B C=A-==

C = and (A B) C=A&B

C=or (A B) C=A| B

C=not (G C=-G

C = ctranspose (G cC=0G

C = transpose (G c=aGg"

C = horzcat (A B) C=[A, B

C = vertcat (A B) C=[A; B

C = subsref (A 1, J) C=A(1,d) or C=A(M
C = subsasgn (A I, J) C(I,J) =A

i ndex = end (A, k, n) for object indexing, A(1l:end,1:end)

Static Methods:

The Static Methods for the gb class can be used on input matrices of
any kind: G aphBLAS sparse matrices, MATLAB sparse natrices, or
MATLAB dense natrices, in any conbination. The output matrix Cout is
a G aphBLAS matrix, by default, but can be optionally returned as a
MATLAB sparse or dense matrix. The static nmethods divide into two
categories: those that perform basic functions, and the G aphBLAS
operations that use the mask/accum

GraphBLAS basic functions:

gb. cl ear cl ear GraphBLAS wor kspace and settings
gb. descriptorinfo (d) list properties of a descriptor

gb. unopi nfo (op, type) list properties of a unary operator

gb. bi nopi nfo (op, type) list properties of a binary operator

gb. monoi di nfo (op, type) list properties of a nonoid
gb.semringinfo (s, type) list properties of a semring

t = gb.threads (t) set/get # of threads to use in G aphBLAS
¢ = gb.chunk (c) set/get chunk size to use in G aphBLAS
result = gb.entries (G ...) count or query entries in a matrix
result = gb.nonz (G ...) count or query nonzeros in a matrix

C = gb. prune (A id) prune entries equal to id

C = gb.offdiag (A prune di agonal entries

s = gh.isfull (A) true if all entries present

[C1,J] = gb.conpact (A id) renmove enpty rows and col ums

G = gb.enmpty (m n) return an enpty G aphBLAS matrix

s = gh.type (A get the type of a MATLAB or gb matrix A
s = gh.issigned (type) true if type is signed

f = gb.format (f) set/get matrix format to use in G aphBLAS
s = gh.isbyrow (A) true if format f Ais 'by row

s = gh.isbycol (A true if format f Ais 'by col’

C = gb. expand (scal ar, A) expand a scalar (C = scal ar*spones(A))
C = gb. eye identity matrix of any type

C = gb. speye identity matrix (of type 'double")
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C=gb.build (I, J, X, m n, dup, type, desc)

build a gb matrix fromlist of entries
[1,3,X] = gb.extracttuples (A desc)

extract all entries froma matrix

GraphBLAS operations with Cout, mask M, and
accum.

Cout = gh.mkm (Cin, M accum semring, A B, desc)

sparse matrix-matrix nultiplication over a senmiring
Cout = gh.select (Cn, M accum op, A thunk, desc)

sel ect a subset of entries froma matrix

Cout = gh.assign (Cn, M accum A, 1, J, desc)
sparse matrix assignment, such as C(l,J)=A
Cout = gh.subassign (Cn, M accum A, 1, J, desc)

sparse matrix assignment, such as C(l,J)=A
Cout = gb.vreduce (Cin, M accum op, A desc)
reduce a matrix to a vector
Cout = gb.reduce (G n, accum op, A desc)
reduce a matrix to a scal ar
Cout = gh.gbkron (Cn, M accum op, A B, desc)
Kr onecker product
Cout = gh.gbtranspose (Cin, M accum A, desc)
transpose a matrix
Cout = gb.eadd (Cn, M accum op, A B, desc)
el enent-w se addition
Cout = gb.emult (Cn, M accum op, A B, desc)
el enent-wise nultiplication
Cout = gbh.apply (G n, M accum op, A, desc)
apply a unary operator
gb.extract (Cn, M accum A |, J, desc)
extract submatrix, like C=A(l,J) in NMATLAB

Cout

GraphBLAS operations (with Cout, Cin arguments) take the following form:
C<#M repl ace> = accum (C, operation (Aor A, Bor B))

Cis both an input and output matrix. 1In this MATLAB interface to
GraphBLAS, it is split into Cn (the value of C on input) and Cout
(the value of Con output). Mis the optional mask matrix, and #Mis
either Mor ! Mdepending on whether or not the nask is conpl emented
via the desc.nask option. The replace option is determ ned by
desc.out; if present, Cis cleared after it is used in the accum
operation but before the final assignment. A and/or B may optionally
be transposed via the descriptor fields desc.in0 and desc.inl
respectively. To select the format of Cout, use desc.format. See
gb. descriptorinfo for nore details.

accumis optional; if not is not present, then the operation becones
C<...> = operation(A, B). OQherwise, C=C + operation(A B) is
conputed where '+ is the accumoperator. It acts |ike a sparse

matri x addition (see gb.eadd), in ternms of the structure of the
result C, but any binary operator can be used.

38



GraphBLAS: graph algorithms
in the language of linear algebra

The mask M acts |ike MATLAB | ogical indexing. If Mi,j)=1 then
C(i,j) can be nodified; if zero, it cannot be nodified by the
operation.

Static Methods for graph algorithms:

r = gb. pagerank (A, opts) ; % PageRank of a matrix

C = gb. ktruss (A, k, check) ; % k-truss

s = gh.tricount (A, check) ; % triangle count

L = gb.laplacian (A, type, check) ; % Lapl aci an gr aph

C = gb.incidence (A ...) ; % i ncidence matrix

[v, parent] = gb.bfs (A s, ...) ; % breadt h-first search
iset = gb.ms (A check) ; % maxi mal i ndependent set
Y = gb.dnn (W bias, YO) ; % deep neural network
More graph algorithms will be added in the future.

Thanks for watching!

Tim Davis, Texas A&M University, http://faculty.cse.tamu.edu/davis See also sparse, doc sparse, and
https.//twitter.com/DocSparse

Published with MATLAB® R2019b
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